Search results
Results From The WOW.Com Content Network
In the 1930s metallurgists Albert Portevin and D. Seferian attempted to experimentally determine heat transfer characteristics in welding. [1] They correlated the effects of several factors—material properties, welding process, and part dimensions—on temperature distribution, by performing oxyacetylene (gas) and covered electrode (arc) welds on plates and bars of various profiles, and ...
Deformation of a thin plate highlighting the displacement, the mid-surface (red) and the normal to the mid-surface (blue) The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments.
In general, exact solutions for cantilever plates using plate theory are quite involved and few exact solutions can be found in the literature. Reissner and Stein [7] provide a simplified theory for cantilever plates that is an improvement over older theories such as Saint-Venant plate theory.
Vibration mode of a clamped square plate. The vibration of plates is a special case of the more general problem of mechanical vibrations.The equations governing the motion of plates are simpler than those for general three-dimensional objects because one of the dimensions of a plate is much smaller than the other two.
The Mindlin hypothesis implies that the displacements in the plate have the form = (,) ; =, = (,)where and are the Cartesian coordinates on the mid-surface of the undeformed plate and is the coordinate for the thickness direction, , =, are the in-plane displacements of the mid-surface, is the displacement of the mid-surface in the direction, and designate the angles which the normal to the mid ...
In this case we start with an assumed form of the displacement and try to fit the parameters so that the governing equation and the boundary conditions are satisfied. The goal is to find Y m ( y ) {\displaystyle Y_{m}(y)} such that it satisfies the boundary conditions at y = 0 {\displaystyle y=0} and y = b {\displaystyle y=b} and, of course ...
A single-displacement reaction, also known as single replacement reaction or exchange reaction, is an archaic concept in chemistry. It describes the stoichiometry of some chemical reactions in which one element or ligand is replaced by atom or group. [1] [2] [3] It can be represented generically as: + +
The equations are written only for the small domain of individual elements of the structure rather than a single equation that describes the response of the system as a whole (a continuum). The latter would result in an intractable problem, hence the utility of the finite element method.