Search results
Results From The WOW.Com Content Network
Now, if this motor is fed with current of 2 A and assuming that back-EMF is exactly 2 V, it is rotating at 7200 rpm and the mechanical power is 4 W, and the force on rotor is = N or 0.0053 N. The torque on shaft is 0.0053 N⋅m at 2 A because of the assumed radius of the rotor (exactly 1 m).
When an electric motor, AC or DC, is first energized, the rotor is not moving, and a current equivalent to the stalled current will flow, reducing as the motor picks up speed and develops a back EMF to oppose the supply. AC induction motors behave as transformers with a shorted secondary until the rotor begins to move, while brushed motors ...
The motor speed varies as a non-linear function of load torque and armature current; current is common to both the stator and rotor yielding current squared (I^2) behavior [citation needed]. A series motor has very high starting torque and is commonly used for starting high inertia loads, such as trains, elevators or hoists. [ 2 ]
An industrial electric motor . An electric motor is a machine that converts electrical energy into mechanical energy.Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft.
A motor requiring a DC power supply for operation is termed a DC motor. DC motors are widely used in control applications like robotics, tape drives, machines and many more. Separately excited DC motors are suitable for control applications because of separate field and armature circuit. [1] Two ways to control DC separately excited motors are ...
A variant of the DC system is the AC series motor, also known as the universal motor, which is essentially the same device but operates on alternating current. Since both the armature and field current reverse at the same time, the behavior of the motor is similar to that when energized with direct current.
The neutral current can be determined by adding the three phase currents together as complex numbers and then converting from rectangular to polar co-ordinates. If the three-phase root mean square (RMS) currents are I L 1 {\displaystyle I_{L1}} , I L 2 {\displaystyle I_{L2}} , and I L 3 {\displaystyle I_{L3}} , the neutral RMS current is:
With a lower overall voltage across the motor's internal resistance as the motor turns faster, the current flowing into the motor decreases. [4] One practical application of this phenomenon is to indirectly measure motor speed and position, as the back-EMF is proportional to the rotational speed of the armature. [5]