Search results
Results From The WOW.Com Content Network
For an example, see Ice § Phases. Liquid: A mostly non-compressible fluid. Able to conform to the shape of its container but retains a (nearly) constant volume independent of pressure. Gas: A compressible fluid. Not only will a gas take the shape of its container but it will also expand to fill the container. Mesomorphic states: States of ...
A phase is a form of matter that is homogeneous in chemical composition and physical state.Typical phases are solid, liquid and gas. Two immiscible liquids (or liquid mixtures with different compositions) separated by a distinct boundary are counted as two different phases, as are two immiscible solids.
A vapor can exist in equilibrium with a liquid (or solid), in which case the gas pressure equals the vapor pressure of the liquid (or solid). A supercritical fluid (SCF) is a gas whose temperature and pressure are above the critical temperature and critical pressure respectively. In this state, the distinction between liquid and gas disappears.
One example is the liquid–vapor critical point, the end point of the pressure–temperature curve that designates conditions under which a liquid and its vapor can coexist. At higher temperatures, the gas comes into a supercritical phase, and so cannot be liquefied by pressure alone.
As the temperature and pressure approach the critical point, the properties of the liquid and gas become progressively more similar. At the critical point, the liquid and gas become indistinguishable. Above the critical point, there are no longer separate liquid and gas phases: there is only a generic fluid phase referred to as a supercritical ...
Examples are: mixtures of sand and water or sand and iron filings, a conglomerate rock, water and oil, a salad, trail mix, and concrete (not cement). [12] A mixture can be determined to be homogeneous when everything is settled and equal, and the liquid, gas, the object is one color or the same form.
Examples of heterogeneous mixtures are emulsions and foams. In most cases, the mixture consists of two main constituents. For an emulsion, these are immiscible fluids such as water and oil. For a foam, these are a solid and a fluid, or a liquid and a gas.
Gas stoichiometry deals with reactions involving gases, where the gases are at a known temperature, pressure, and volume and can be assumed to be ideal gases. For gases, the volume ratio is ideally the same by the ideal gas law , but the mass ratio of a single reaction has to be calculated from the molecular masses of the reactants and products.