Search results
Results From The WOW.Com Content Network
Homogeneity and heterogeneity; only ' b ' is homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image.A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous ...
Simple populations surveys may start from the idea that responses will be homogeneous across the whole of a population. Assessing the homogeneity of the population would involve looking to see whether the responses of certain identifiable subpopulations differ from those of others. For example, car-owners may differ from non-car-owners, or ...
In addition, "uniform mixture" is another term for homogeneous mixture and "non-uniform mixture" is another term for heterogeneous mixture. These terms are derived from the idea that a homogeneous mixture has a uniform appearance , or only one phase , because the particles are evenly distributed.
A diagram featuring all of the factors that affect heterogeneous nucleation. Unlike homogeneous nucleation, heterogeneous nucleation occurs on a surface or impurity. It is much more common than homogeneous nucleation. This is because the nucleation barrier for heterogeneous nucleation is much lower than for homogeneous nucleation.
Heterogeneous computing refers to systems that use more than one kind of processor or core. These systems gain performance or energy efficiency not just by adding the same type of processors, but by adding dissimilar coprocessors , usually incorporating specialized processing capabilities to handle particular tasks.
In physics, a homogeneous material or system has the same properties at every point; it is uniform without irregularities. [ 1 ] [ 2 ] A uniform electric field (which has the same strength and the same direction at each point) would be compatible with homogeneity (all points experience the same physics).
A linear differential equation is homogeneous if it is a homogeneous linear equation in the unknown function and its derivatives. It follows that, if φ(x) is a solution, so is cφ(x), for any (non-zero) constant c. In order for this condition to hold, each nonzero term of the linear differential equation must depend on the unknown function or ...
In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar, then the function's value is multiplied by some power of this scalar; the power is called the degree of homogeneity, or simply the degree.