When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...

  3. Reduction potential - Wikipedia

    en.wikipedia.org/wiki/Reduction_potential

    In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...

  4. Standard electrode potential - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode_potential

    The larger the value of the standard reduction potential, the easier it is for the element to be reduced (gain electrons); in other words, they are better oxidizing agents. For example, F 2 has a standard reduction potential of +2.87 V and Li + has −3.05 V: F 2 (g) + 2 e − ⇌ 2 F − = +2.87 V Li + + e − ⇌ Li (s) = −3.05 V

  5. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    The values below are standard apparent reduction potentials (E°') for electro-biochemical half-reactions measured at 25 °C, 1 atmosphere and a pH of 7 in aqueous solution. [ 1 ] [ 2 ] The actual physiological potential depends on the ratio of the reduced ( Red ) and oxidized ( Ox ) forms according to the Nernst equation and the thermal voltage .

  6. Standard electrode potential (data page) - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode...

    For example, from Fe 2+ + 2 e − ⇌ Fe(s) (–0.44 V), the energy to form one neutral atom of Fe(s) from one Fe 2+ ion and two electrons is 2 × 0.44 eV = 0.88 eV, or 84 907 J/(mol e −). That value is also the standard formation energy (∆ G f °) for an Fe 2+ ion, since e − and Fe( s ) both have zero formation energy.

  7. Butler–Volmer equation - Wikipedia

    en.wikipedia.org/wiki/Butler–Volmer_equation

    At a certain voltage E e, equilibrium will attain and the forward and backward rates (v f and v b) will be equal. This is represented by the green curve in the above figure. The equilibrium rate constants will be written as k fe and k be, and the equilibrium concentrations will be written c oe and c re.

  8. Cyclic voltammetry - Wikipedia

    en.wikipedia.org/wiki/Cyclic_voltammetry

    CV can also be used to determine the electron stoichiometry of a system, the diffusion coefficient of an analyte, and the formal reduction potential of an analyte, which can be used as an identification tool. In addition, because concentration is proportional to current in a reversible, Nernstian system, the concentration of an unknown solution ...

  9. Frost diagram - Wikipedia

    en.wikipedia.org/wiki/Frost_diagram

    The slope of the line between any two points on a Frost diagram gives the standard reduction potential, E°, for the corresponding half-reaction. On the Frost diagram for nitrogen here below, the slope of the straight line between N 2 (at the origin of the plot) and nitrite ( HNO 2 / NO − 2 ) being slightly more pronounced than for nitrate ...