Search results
Results From The WOW.Com Content Network
Placing position on the y-axis and time on the x-axis, the slope of the curve is given by: = =. Here is the position of the object, and is the time. Therefore, the slope of the curve gives the change in position divided by the change in time, which is the definition of the average velocity for that interval of time on the graph.
The instantaneous velocity equation comes from finding the limit as t approaches 0 of the average velocity. The instantaneous velocity shows the position function with respect to time. From the instantaneous velocity the instantaneous speed can be derived by getting the magnitude of the instantaneous velocity.
In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.
The generalization of this concept to 3-dimensional space is that of a twist around a screw. The screw has an axis which is a line in 3D space (not necessarily through the origin), the axis of rotation; the screw also has a finite pitch (a fixed translation along its axis corresponding to a rotation about the screw axis).
Average speed does not describe the speed variations that may have taken place during shorter time intervals (as it is the entire distance covered divided by the total time of travel), and so average speed is often quite different from a value of instantaneous speed. [3] If the average speed and the time of travel are known, the distance ...
It is often convenient to formulate the trajectory of a particle r(t) = (x(t), y(t), z(t)) using polar coordinates in the X–Y plane. In this case, its velocity and acceleration take a convenient form. Recall that the trajectory of a particle P is defined by its coordinate vector r measured in a fixed reference frame F.
It is rather the instantaneous value which satisfies the above conditions as calculated from the current gravitational and geometric circumstances of the body's constantly-changing, perturbed orbit. Mean motion is used as an approximation of the actual orbital speed in making an initial calculation of the body's position in its orbit, for ...
Speed is a scalar, being the magnitude of the velocity vector which in relativity is the four-velocity and in three-dimension Euclidean space a three-velocity. Speed is empirically measured as average speed, although current devices in common use can estimate speed over very small intervals and closely approximate instantaneous speed.