When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    The proof is written as a series of lines in two columns. In each line, the left-hand column contains a proposition, while the right-hand column contains a brief explanation of how the corresponding proposition in the left-hand column is either an axiom, a hypothesis, or can be logically derived from previous propositions.

  3. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    The proof for Cramer's rule uses the following properties of the determinants: linearity with respect to any given column and the fact that the determinant is zero whenever two columns are equal, which is implied by the property that the sign of the determinant flips if you switch two columns.

  4. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    Rank (linear algebra) In linear algebra, the rank of a matrix A is the dimension of the vector space generated (or spanned) by its columns. [1][2][3] This corresponds to the maximal number of linearly independent columns of A. This, in turn, is identical to the dimension of the vector space spanned by its rows. [4]

  5. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    Determinant. In mathematics, the determinant is a scalar -valued function of the entries of a square matrix. The determinant of a matrix A is commonly denoted det (A), det A, or |A|. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix. In particular, the determinant is nonzero if ...

  6. Permutation matrix - Wikipedia

    en.wikipedia.org/wiki/Permutation_matrix

    Permutation matrix. In mathematics, particularly in matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column with all other entries 0. [1]: 26 An n × n permutation matrix can represent a permutation of n elements. Pre- multiplying an n -row matrix M by a permutation matrix P ...

  7. Normal matrix - Wikipedia

    en.wikipedia.org/wiki/Normal_matrix

    The concept of normal matrices can be extended to normal operators on infinite-dimensional normed spaces and to normal elements in C*-algebras. As in the matrix case, normality means commutativity is preserved, to the extent possible, in the noncommutative setting. This makes normal operators, and normal elements of C*-algebras, more amenable ...

  8. Formal proof - Wikipedia

    en.wikipedia.org/wiki/Formal_proof

    Formal proof. In logic and mathematics, a formal proof or derivation is a finite sequence of sentences (known as well-formed formulas when relating to formal language), each of which is an axiom, an assumption, or follows from the preceding sentences in the sequence, according to the rule of inference. It differs from a natural language ...

  9. Row equivalence - Wikipedia

    en.wikipedia.org/wiki/Row_equivalence

    Row equivalence. In linear algebra, two matrices are row equivalent if one can be changed to the other by a sequence of elementary row operations. Alternatively, two m × n matrices are row equivalent if and only if they have the same row space. The concept is most commonly applied to matrices that represent systems of linear equations, in ...