When.com Web Search

  1. Ad

    related to: how to solve physics equations in matlab file format examples 1 5

Search results

  1. Results From The WOW.Com Content Network
  2. Homotopy analysis method - Wikipedia

    en.wikipedia.org/wiki/Homotopy_analysis_method

    The homotopy analysis method (HAM) is a semi-analytical technique to solve nonlinear ordinary / partial differential equations. The homotopy analysis method employs the concept of the homotopy from topology to generate a convergent series solution for nonlinear systems. This is enabled by utilizing a homotopy- Maclaurin series to deal with the ...

  3. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    Gauss–Seidel method. In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel.

  4. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  5. Solutions of the Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Solutions_of_the_Einstein...

    This equation will often depend on temperature, so a heat transfer equation is required or the postulate that heat transfer can be neglected. Next, notice that only 10 of the original 14 equations are independent, because the continuity equation T a b ; b = 0 {\displaystyle T^{ab}{}_{;b}=0} is a consequence of Einstein's equations.

  6. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients. This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of ...

  7. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    The first general equation of motion developed was Newton's second law of motion. In its most general form it states the rate of change of momentum p = p(t) = mv(t) of an object equals the force F = F(x(t), v(t), t) acting on it, [13]: 1112. The force in the equation is not the force the object exerts.

  8. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  9. Mathieu function - Wikipedia

    en.wikipedia.org/wiki/Mathieu_function

    Mathieu's differential equations appear in a wide range of contexts in engineering, physics, and applied mathematics. Many of these applications fall into one of two general categories: 1) the analysis of partial differential equations in elliptic geometries, and 2) dynamical problems which involve forces that are periodic in either space or time.