When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nilpotent matrix - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_matrix

    nilpotent matrix is always less than or equal to. n {\displaystyle n} For example, every. 2 × 2 {\displaystyle 2\times 2} nilpotent matrix squares to zero. The determinant and trace of a nilpotent matrix are always zero. Consequently, a nilpotent matrix cannot be invertible. The only nilpotent diagonalizable matrix is the zero matrix.

  3. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The Jordan block corresponding to λ is of the form λI + N, where N is a nilpotent matrix defined as N ij = δ i,j−1 (where δ is the Kronecker delta). The nilpotency of N can be exploited when calculating f(A) where f is a complex analytic function. For example, in principle the Jordan form could give a closed-form expression for the ...

  4. Heisenberg group - Wikipedia

    en.wikipedia.org/wiki/Heisenberg_group

    If a, b, c, are real numbers (in the ring R) then one has the continuous Heisenberg group H 3 (R).. It is a nilpotent real Lie group of dimension 3.. In addition to the representation as real 3×3 matrices, the continuous Heisenberg group also has several different representations in terms of function spaces.

  5. Nilpotent - Wikipedia

    en.wikipedia.org/wiki/Nilpotent

    Nilpotent. In mathematics, an element of a ring is called nilpotent if there exists some positive integer , called the index (or sometimes the degree), such that . The term, along with its sister idempotent, was introduced by Benjamin Peirce in the context of his work on the classification of algebras. [1]

  6. Schur decomposition - Wikipedia

    en.wikipedia.org/wiki/Schur_decomposition

    Schur decomposition. In the mathematical discipline of linear algebra, the Schur decomposition or Schur triangulation, named after Issai Schur, is a matrix decomposition. It allows one to write an arbitrary complex square matrix as unitarily similar to an upper triangular matrix whose diagonal elements are the eigenvalues of the original matrix.

  7. Cayley–Hamilton theorem - Wikipedia

    en.wikipedia.org/wiki/Cayley–Hamilton_theorem

    The Cayley–Hamilton theorem is an immediate consequence of the existence of the Jordan normal form for matrices over algebraically closed fields, see Jordan normal form § Cayley–Hamilton theorem. In this section, direct proofs are presented. As the examples above show, obtaining the statement of the Cayley–Hamilton theorem for an n × n ...

  8. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    Matrix exponential. In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.

  9. Nilpotent operator - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_operator

    The Volterra operator is the corresponding integral operator T on the Hilbert space L2 (0,1) given by. The operator T is not nilpotent: take f to be the function that is 1 everywhere and direct calculation shows that Tn f ≠ 0 (in the sense of L2) for all n. However, T is quasinilpotent. First notice that K is in L2 (X, m), therefore T is compact.