When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    The gravitational acceleration vector depends only on how massive the field source is and on the distance 'r' to the sample mass . It does not depend on the magnitude of the small sample mass. This model represents the "far-field" gravitational acceleration associated with a massive body.

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    During the first 0.05 s the ball drops one unit of distance (about 12 mm), by 0.10 s it has dropped at total of 4 units, by 0.15 s 9 units, and so on. Near the surface of the Earth, the acceleration due to gravity g = 9.807 m/s 2 ( metres per second squared , which might be thought of as "metres per second, per second"; or 32.18 ft/s 2 as "feet ...

  4. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant. The first test of Newton's law of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry ...

  5. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  6. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Acceleration has the dimensions of velocity (L/T) divided by time, i.e. L T −2. The SI unit of acceleration is the metre per second squared (m s −2); or "metre per second per second", as the velocity in metres per second changes by the acceleration value, every second.

  7. Gravitational field - Wikipedia

    en.wikipedia.org/wiki/Gravitational_field

    This includes Newton's law of universal gravitation, and the relation between gravitational potential and field acceleration. ⁠ d 2 R / dt 2 ⁠ and ⁠ F / m ⁠ are both equal to the gravitational acceleration g (equivalent to the inertial acceleration, so same mathematical form, but also defined as gravitational force per unit mass [8 ...

  8. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    Gravity F = mg does work W = mgh along any descending path. In the absence of other forces, gravity results in a constant downward acceleration of every freely moving object. Near Earth's surface the acceleration due to gravity is g = 9.8 m⋅s −2 and the gravitational force on an object of mass m is F g = mg.

  9. Gauss's law for gravity - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law_for_gravity

    Gauss's law for gravity is often more convenient to work from than Newton's law. [1] The form of Gauss's law for gravity is mathematically similar to Gauss's law for electrostatics, one of Maxwell's equations. Gauss's law for gravity has the same mathematical relation to Newton's law that Gauss's law for electrostatics bears to Coulomb's law.