Search results
Results From The WOW.Com Content Network
Autosomal dominant A 50/50 chance of inheritance. Sickle-cell disease is inherited in the autosomal recessive pattern. When both parents have sickle-cell trait (carrier), a child has a 25% chance of sickle-cell disease (red icon), 25% do not carry any sickle-cell alleles (blue icon), and 50% have the heterozygous (carrier) condition. [1]
Y-linked inheritance Pedigree tree showing the inheritance of a Y-linked trait. Y linkage, also known as holandric inheritance (from Ancient Greek ὅλος hólos, "whole" + ἀνδρός andrós, "male"), [1] describes traits that are produced by genes located on the Y chromosome. It is a form of sex linkage. Y linkage can be difficult to detect.
A genetic lineage includes all descendants of a given genetic sequence, typically following a new mutation.It is not the same as an allele because it excludes cases where different mutations give rise to the same allele, and includes descendants that differ from the ancestor by one or more mutations.
Before a cell divides through mitosis, the DNA is copied, so that each of the resulting two cells will inherit the DNA sequence. A portion of a DNA molecule that specifies a single functional unit is called a gene; different genes have different sequences of bases. Within cells, the long strands of DNA form condensed structures called chromosomes.
An example of a pedigree for an autosomal dominant condition Other conditions are inherited in an autosomal recessive pattern, where affected individuals do not typically have an affected parent. Since each parent must have a copy of the recessive allele in order to have an affected offspring, the parents are referred to as carriers of the ...
An example of a family pedigree displaying an autosomal recessive trait. A pedigree is a diagram showing the ancestral relationships and transmission of genetic traits over several generations in a family. Square symbols are almost always used to represent males, whilst circles are used for females.
The word pedigree is a corruption of the Anglo-Norman French pé de grue or "crane's foot", either because the typical lines and split lines (each split leading to different offspring of the one parent line) resemble the thin leg and foot of a crane [3] or because such a mark was used to denote succession in pedigree charts.
Classical genetics is the branch of genetics based solely on visible results of reproductive acts. It is the oldest discipline in the field of genetics, going back to the experiments on Mendelian inheritance by Gregor Mendel who made it possible to identify the basic mechanisms of heredity.