When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Geodesic - Wikipedia

    en.wikipedia.org/wiki/Geodesic

    Klein quartic with 28 geodesics (marked by 7 colors and 4 patterns). In geometry, a geodesic (/ ˌ dʒ iː. ə ˈ d ɛ s ɪ k,-oʊ-,-ˈ d iː s ɪ k,-z ɪ k /) [1] [2] is a curve representing in some sense the locally [a] shortest [b] path between two points in a surface, or more generally in a Riemannian manifold.

  3. Geographical distance - Wikipedia

    en.wikipedia.org/wiki/Geographical_distance

    Finding the geodesic between two points on the Earth, the so-called inverse geodetic problem, was the focus of many mathematicians and geodesists over the course of the 18th and 19th centuries with major contributions by Clairaut, [5] Legendre, [6] Bessel, [7] and Helmert English translation of Astron. Nachr. 4, 241–254 (1825). Errata. [8]

  4. Distance (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Distance_(graph_theory)

    In the mathematical field of graph theory, the distance between two vertices in a graph is the number of edges in a shortest path (also called a graph geodesic) connecting them. This is also known as the geodesic distance or shortest-path distance. [1] Notice that there may be more than one shortest path between two vertices. [2]

  5. Earth section paths - Wikipedia

    en.wikipedia.org/wiki/Earth_section_paths

    The shortest path between two points on a spheroid is known as a geodesic. Such paths are developed using differential geometry. The equator and meridians are great ellipses that are also geodesics [a]. The maximum difference in length between a great ellipse and the corresponding geodesic of length 5,000 nautical miles is about 10.5 meters.

  6. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...

  7. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the sphere. (By comparison, the shortest path passing ...

  8. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration , their motion satisfying the geodesic equations.

  9. Great-circle navigation - Wikipedia

    en.wikipedia.org/wiki/Great-circle_navigation

    Figure 2. The great circle path between a node (an equator crossing) and an arbitrary point (φ,λ). Finally, calculate the position and azimuth at an arbitrary point, P (see Fig. 2), by the spherical version of the direct geodesic problem. [note 5] Napier's rules give .