When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Van 't Hoff factor - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_factor

    For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1. For most ionic compounds dissolved in water, the van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance. This is true for ideal solutions only, as occasionally ion pairing occurs in solution. At a given instant a small ...

  3. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".

  4. Osmotic pressure - Wikipedia

    en.wikipedia.org/wiki/Osmotic_pressure

    where is osmotic pressure, i is the dimensionless van 't Hoff index, c is the molar concentration of solute, R is the ideal gas constant, and T is the absolute temperature (usually in kelvins). This formula applies when the solute concentration is sufficiently low that the solution can be treated as an ideal solution.

  5. Ebullioscopic constant - Wikipedia

    en.wikipedia.org/wiki/Ebullioscopic_constant

    i is the van 't Hoff factor, the number of particles the solute splits into or forms when dissolved. b is the molality of the solution. A formula to compute the ebullioscopic constant is: [2] = R is the ideal gas constant. M is the molar mass of the solvent.

  6. Osmotic coefficient - Wikipedia

    en.wikipedia.org/wiki/Osmotic_coefficient

    where is the chemical potential of the pure solvent and is the chemical potential of the solvent in a solution, M A is its molar mass, x A its mole fraction, R the gas constant and T the temperature in Kelvin. [1] The latter osmotic coefficient is sometimes called the rational osmotic coefficient. The values for the two definitions are ...

  7. Freezing-point depression - Wikipedia

    en.wikipedia.org/wiki/Freezing-point_depression

    In the above equation, T F is the normal freezing point of the pure solvent (273 K for water, for example); a liq is the activity of the solvent in the solution (water activity for aqueous solution); ΔH fus T F is the enthalpy change of fusion of the pure solvent at T F, which is 333.6 J/g for water at 273 K; ΔC fus p is the difference ...

  8. Colligative properties - Wikipedia

    en.wikipedia.org/wiki/Colligative_properties

    Here K f is the cryoscopic constant (equal to 1.86 °C kg/mol for the freezing point of water), i is the van 't Hoff factor, and m the molality (in mol/kg). This predicts the melting of ice by road salt. In the liquid solution, the solvent is diluted by the addition of a solute, so that fewer molecules are available to freeze.

  9. Standard enthalpy of reaction - Wikipedia

    en.wikipedia.org/wiki/Standard_enthalpy_of_reaction

    The enthalpy of reaction is then found from the van 't Hoff equation as = ⁡. A closely related technique is the use of an electroanalytical voltaic cell , which can be used to measure the Gibbs energy for certain reactions as a function of temperature, yielding K e q ( T ) {\displaystyle K_{\mathrm {eq} }(T)} and thereby Δ rxn H ⊖ ...