When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. q-analog - Wikipedia

    en.wikipedia.org/wiki/Q-analog

    The earliest q-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century. [1] q-analogs are most frequently studied in the mathematical fields of combinatorics and special functions. In these settings, the limit q → 1 is often formal, as q is often discrete-valued (for example, it may represent a ...

  3. Basic hypergeometric series - Wikipedia

    en.wikipedia.org/wiki/Basic_hypergeometric_series

    In mathematics, basic hypergeometric series, or q-hypergeometric series, are q-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series x n is called hypergeometric if the ratio of successive terms x n+1 /x n is a rational function of n.

  4. q-Pochhammer symbol - Wikipedia

    en.wikipedia.org/wiki/Q-Pochhammer_symbol

    The q-Pochhammer symbol is the subject of a number of q-series identities, ... Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press ...

  5. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  6. List of q-analogs - Wikipedia

    en.wikipedia.org/wiki/List_of_q-analogs

    This is a list of q-analogs in mathematics and related fields. Algebra ... q-Jacobi polynomials: ... Basic hypergeometric series;

  7. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.

  8. ‘The Crossing’ by Huffington Post

    testkitchen.huffingtonpost.com/thecrossing

    Watch firsthand, in 360 video, as Susan Sarandon listens and learns about refugees' hopes, dreams and journeys

  9. Quantum calculus - Wikipedia

    en.wikipedia.org/wiki/Quantum_calculus

    For 0 < q < 1, the series converges to a function F(x) on an interval (0,A] if |f(x)x α | is bounded on the interval (0, A] for some 0 ≤ α < 1. The q-integral is a Riemann–Stieltjes integral with respect to a step function having infinitely many points of increase at the points q j..The jump at the point q j is q j.