When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Control volume - Wikipedia

    en.wikipedia.org/wiki/Control_volume

    The closed surface enclosing the region is referred to as the control surface. [1] At steady state, a control volume can be thought of as an arbitrary volume in which the mass of the continuum remains constant. As a continuum moves through the control volume, the mass entering the control volume is equal to the mass leaving the control volume.

  3. Finite volume method for one-dimensional steady state ...

    en.wikipedia.org/wiki/Finite_volume_method_for...

    Create control volumes using these nodal points. Control volume and control volume & boundary faces (Figure 2) Create control volumes near the edges in such a way that the physical boundaries coincide with control volume boundaries (Figure 1). Assume a general nodal point 'P' for a general control volume. Adjacent nodal points to the East and ...

  4. Finite volume method for two dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    Hirsch, C. (1990), Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows, Wiley. Laney, Culbert B.(1998), Computational Gas Dynamics, Cambridge University Press. LeVeque, Randall(1990), Numerical Methods for Conservation Laws, ETH Lectures in Mathematics Series, Birkhauser-Verlag.

  5. Finite volume method for three-dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    Set up the control volume near the edge of domain such that physical as well as control volume boundaries will coincide with each other. 4. Considering a general nodal point P accompanied by six neighboring nodal point ‘E’ (which represent east), ‘W’ (which represent west), ‘N’ (which represent north), ‘S’ (which represent south ...

  6. Convection–diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Convection–diffusion...

    The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...

  7. Cauchy momentum equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy_momentum_equation

    where Ω represents the control volume. Since this equation must hold for any control volume, it must be true that the integrand is zero, from this the Cauchy momentum equation follows. The main step (not done above) in deriving this equation is establishing that the derivative of the stress tensor is one of the forces that constitutes F i. [1]

  8. Finite volume method - Wikipedia

    en.wikipedia.org/wiki/Finite_volume_method

    The finite volume method (FVM) is a method for representing and evaluating partial differential equations in the form of algebraic equations. [1] In the finite volume method, volume integrals in a partial differential equation that contain a divergence term are converted to surface integrals, using the divergence theorem. These terms are then ...

  9. Betz's law - Wikipedia

    en.wikipedia.org/wiki/Betz's_law

    As an effectively 1-D model, the flow into and out of the disk is axial, and all velocities are transversely uniform. This is a control-volume analysis; the control volume must contain all incoming and outgoing flow in order to use the conservation equations. The flow is non-compressible. Density is constant, and there is no heat transfer.