Search results
Results From The WOW.Com Content Network
Modern 3 Tesla clinical MRI scanner.. Magnetic resonance imaging (MRI) is a medical imaging technique mostly used in radiology and nuclear medicine in order to investigate the anatomy and physiology of the body, and to detect pathologies including tumors, inflammation, neurological conditions such as stroke, disorders of muscles and joints, and abnormalities in the heart and blood vessels ...
Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to generate pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to form images of the organs in the body.
Radiofrequency coils (RF coils) are the receivers, and sometimes also the transmitters, of radiofrequency (RF) signals in equipment used in magnetic resonance imaging (MRI). The MR signal in MRI is produced by the process of resonance, which is the result of radiofrequency pulses.
, could absorb RF energy when placed in a magnetic field and when the RF was of a frequency specific to the identity of the nuclei. When this absorption occurs, the nucleus is described as being in resonance. Different atomic nuclei within a molecule resonate at different (radio) frequencies in the same applied static magnetic field, due to ...
The gradients for MRM are typically 50 to 100 times those of clinical systems. However, the construction of radio frequency (RF) coils used in MRM does not allow ultrahigh gradients. Sensitivity: Because the voxels for MRM can be 1/100,000 of those in MRI, the signal is proportionately weaker. [7] [8] [9]
In magnetic resonance imaging (MRI) and nuclear magnetic resonance spectroscopy (NMR), an observable nuclear spin polarization (magnetization) is created by a homogeneous magnetic field. This field makes the magnetic dipole moments of the sample precess at the resonance frequency of the nuclei. At thermal equilibrium, nuclear spins precess ...
Fast low angle shot magnetic resonance imaging (FLASH MRI) is a particular sequence of magnetic resonance imaging. It is a gradient echo sequence which combines a low-flip angle radio-frequency excitation of the nuclear magnetic resonance signal (recorded as a spatially encoded gradient echo) with a short repetition time.
Magnetic resonance force microscopy (MRFM) is an imaging technique that acquires magnetic resonance images at nanometer scales, and possibly at atomic scales in the future. MRFM is potentially able to observe protein structures which cannot be seen using X-ray crystallography and protein nuclear magnetic resonance spectroscopy .