Search results
Results From The WOW.Com Content Network
The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector, the state vector. If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.
In quantum mechanics a state space is a separable complex Hilbert space.The dimension of this Hilbert space depends on the system we choose to describe. [1] [2] The different states that could come out of any particular measurement form an orthonormal basis, so any state vector in the state space can be written as a linear combination of these basis vectors.
In quantum mechanics, each physical system is associated with a Hilbert space, each element of which represents a possible state of the physical system.The approach codified by John von Neumann represents a measurement upon a physical system by a self-adjoint operator on that Hilbert space termed an "observable".
The state of an isolated physical system is represented, at a fixed time , by a state vector | belonging to a Hilbert space called the state space. Separability is a mathematically convenient hypothesis, with the physical interpretation that the state is uniquely determined by countably many observations.
Measurement, in this context, means submitting the system to some procedure to determine whether the state satisfies the property. The reference to system state, in this discussion, can be given an operational meaning by considering a statistical ensemble of systems. Each measurement yields some definite value 0 or 1; moreover application of ...
The state is not an objective property of an individual system but is that information, obtained from a knowledge of how a system was prepared, which can be used for making predictions about future measurements. ... A quantum mechanical state being a summary of the observer's information about an individual physical system changes both by ...
In the mathematically rigorous formulation of quantum mechanics, developed by John von Neumann, [54] the possible states (more precisely, the pure states) of a quantum mechanical system are represented by unit vectors (called state vectors) residing in a complex separable Hilbert space, known as the state space, well defined up to a complex ...
Specifically, if a system is in a state described by a vector in a Hilbert space, the measurement process affects the state in a non-deterministic but statistically predictable way. In particular, after a measurement is applied, the state description by a single vector may be destroyed, being replaced by a statistical ensemble.