Search results
Results From The WOW.Com Content Network
Poisson's ratio of a material defines the ratio of transverse strain (x direction) to the axial strain (y direction)In materials science and solid mechanics, Poisson's ratio (symbol: ν ()) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading.
In homogeneous and isotropic materials, these define Hooke's law in 3D, = + (), where σ is the stress tensor, ε the strain tensor, I the identity matrix and tr the trace function. Hooke's law may be written in terms of tensor components using index notation as σ i j = 2 μ ε i j + λ δ i j ε k k , {\displaystyle \sigma _{ij}=2\mu ...
where is the Young's modulus along axis , is the shear modulus in direction on the plane whose normal is in direction , and is the Poisson's ratio that corresponds to a contraction in direction when an extension is applied in direction .
The Poisson's ratio is a measure in which a material tends to expand in directions perpendicular to the direction of compression. After measuring the Young's modulus and the shear modulus, dedicated software determines the Poisson's ratio using Hooke's law which can only be applied to isotropic materials according to the different standards.
Some materials, known as auxetics, possess a negative Poisson's ratio because of their unique molecular structure. Because of this property, they experience a positive lateral strain alongside a positive longitudinal strain, and vice versa.
the Poisson's ratio ν describes the response in the directions orthogonal to this uniaxial stress (the wire getting thinner and the column thicker), the bulk modulus K describes the material's response to (uniform) hydrostatic pressure (like the pressure at the bottom of the ocean or a deep swimming pool),
WASHINGTON/BOGOTA (Reuters) -The U.S. and Colombia pulled back from the brink of a trade war on Sunday after the White House said the South American nation had agreed to accept military aircraft ...
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...