Search results
Results From The WOW.Com Content Network
For example, 10 3 = 1000 and 10 −4 = 0.0001. Exponentiation with base 10 is used in scientific notation to denote large or small numbers. For instance, 299 792 458 m/s (the speed of light in vacuum, in metres per second ) can be written as 2.997 924 58 × 10 8 m/s and then approximated as 2.998 × 10 8 m/s .
A space is an absolute neighborhood retract for the class , written (), if is in and whenever is a closed subset of a space in , is a neighborhood retract of . Various classes C {\displaystyle {\mathcal {C}}} such as normal spaces have been considered in this definition, but the class M {\displaystyle {\mathcal {M}}} of metrizable spaces ...
In mathematics, an associative algebra A over a commutative ring (often a field) K is a ring A together with a ring homomorphism from K into the center of A.This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication (the multiplication by the image of the ring homomorphism of an element of K).
In mathematics, a polynomial is a mathematical expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms.
In number theory, an arithmetic, arithmetical, or number-theoretic function [1] [2] is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers.
In algebra, a unit or invertible element [a] of a ring is an invertible element for the multiplication of the ring. That is, an element u of a ring R is a unit if there exists v in R such that = =, where 1 is the multiplicative identity; the element v is unique for this property and is called the multiplicative inverse of u.
The complexity class of problems of this form is called NP, an abbreviation for "nondeterministic polynomial time". A problem is said to be NP-hard if everything in NP can be transformed in polynomial time into it even though it may not be in NP. A problem is NP-complete if it is both in NP and NP-hard.
The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.