Search results
Results From The WOW.Com Content Network
The parallel sides are called the bases of the trapezoid. The other two sides are called the legs (or the lateral sides) if they are not parallel; otherwise, the trapezoid is a parallelogram, and there are two pairs of bases. A scalene trapezoid is a trapezoid with no sides of equal measure, [3] in contrast with the special cases below.
Tangential quadrilateral: the four sides are tangents to an inscribed circle. A convex quadrilateral is tangential if and only if opposite sides have equal sums. Tangential trapezoid: a trapezoid where the four sides are tangents to an inscribed circle. Cyclic quadrilateral: the four vertices lie on a circumscribed circle. A convex ...
The formula for the area of a trapezoid can be simplified using Pitot's theorem to get a formula for the area of a tangential trapezoid. If the bases have lengths a, b, and any one of the other two sides has length c, then the area K is given by the formula [2] (This formula can be used only in cases where the bases are parallel.)
The area of a bicentric quadrilateral can be expressed in terms of two opposite sides and the angle θ between the diagonals according to [9] K = a c tan θ 2 = b d cot θ 2 . {\displaystyle K=ac\tan {\frac {\theta }{2}}=bd\cot {\frac {\theta }{2}}.}
A right kite with its circumcircle and incircle. The leftmost and rightmost vertices have right angles. In Euclidean geometry, a right kite is a kite (a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other) that can be inscribed in a circle. [1]
For any isosceles trapezoid, tangent lines to the circumscribing circle at its four vertices form the four sides of a kite. This correspondence can also be seen as an example of polar reciprocation , a general method for corresponding points with lines and vice versa given a fixed circle.
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
In Euclidean geometry, a harmonic quadrilateral, or harmonic quadrangle, [1] is a quadrilateral that can be inscribed in a circle (cyclic quadrilateral) in which the products of the lengths of opposite sides are equal. It has several important properties.