When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Template matching - Wikipedia

    en.wikipedia.org/wiki/Template_matching

    Template matching [1] is a technique in digital image processing for finding small parts of an image which match a template image. It can be used for quality control in manufacturing, [2] navigation of mobile robots, [3] or edge detection in images.

  3. Outline of object recognition - Wikipedia

    en.wikipedia.org/wiki/Outline_of_object_recognition

    Object recognition – technology in the field of computer vision for finding and identifying objects in an image or video sequence. Humans recognize a multitude of objects in images with little effort, despite the fact that the image of the objects may vary somewhat in different view points, in many different sizes and scales or even when they are translated or rotated.

  4. Comparison gallery of image scaling algorithms - Wikipedia

    en.wikipedia.org/wiki/Comparison_gallery_of...

    The resulting image is larger than the original, and preserves all the original detail, but has (possibly undesirable) jaggedness. The diagonal lines of the "W", for example, now show the "stairway" shape characteristic of nearest-neighbor interpolation. Other scaling methods below are better at preserving smooth contours in the image.

  5. Structural similarity index measure - Wikipedia

    en.wikipedia.org/wiki/Structural_similarity...

    Image Compression: In lossy image compression, information is deliberately discarded to decrease the storage space of images and video. The MSE is typically used in such compression schemes. According to its authors, using SSIM instead of MSE is suggested to produce better results for the decompressed images. [13]

  6. OpenCV - Wikipedia

    en.wikipedia.org/wiki/OpenCV

    OpenCV (Open Source Computer Vision Library) is a library of programming functions mainly for real-time computer vision. [2] Originally developed by Intel , it was later supported by Willow Garage , then Itseez (which was later acquired by Intel [ 3 ] ).

  7. Histogram matching - Wikipedia

    en.wikipedia.org/wiki/Histogram_matching

    It has a probability density function p r (r), where r is a grayscale value, and p r (r) is the probability of that value. This probability can easily be computed from the histogram of the image by = Where n j is the frequency of the grayscale value r j, and n is the total number of pixels in the image.

  8. Feature (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Feature_(computer_vision)

    Feature detection includes methods for computing abstractions of image information and making local decisions at every image point whether there is an image feature of a given type at that point or not. The resulting features will be subsets of the image domain, often in the form of isolated points, continuous curves or connected regions.

  9. Object detection - Wikipedia

    en.wikipedia.org/wiki/Object_detection

    Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]