When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    The special case of linear support vector machines can be solved more efficiently by the same kind of algorithms used to optimize its close cousin, logistic regression; this class of algorithms includes sub-gradient descent (e.g., PEGASOS [48]) and coordinate descent (e.g., LIBLINEAR [49]). LIBLINEAR has some attractive training-time properties.

  3. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.

  4. LIBSVM - Wikipedia

    en.wikipedia.org/wiki/LIBSVM

    LIBSVM and LIBLINEAR are two popular open source machine learning libraries, both developed at the National Taiwan University and both written in C++ though with a C API. LIBSVM implements the sequential minimal optimization (SMO) algorithm for kernelized support vector machines (SVMs), supporting classification and regression. [1]

  5. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Algorithms capable of operating with kernels include the kernel perceptron, support-vector machines (SVM), Gaussian processes, principal components analysis (PCA), canonical correlation analysis, ridge regression, spectral clustering, linear adaptive filters and many others.

  6. Sequential minimal optimization - Wikipedia

    en.wikipedia.org/wiki/Sequential_minimal...

    Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem that arises during the training of support-vector machines (SVM). It was invented by John Platt in 1998 at Microsoft Research. [1] SMO is widely used for training support vector machines and is implemented by the popular LIBSVM tool.

  7. Structured support vector machine - Wikipedia

    en.wikipedia.org/wiki/Structured_support_vector...

    The structured support-vector machine is a machine learning algorithm that generalizes the Support-Vector Machine (SVM) classifier. Whereas the SVM classifier supports binary classification, multiclass classification and regression, the structured SVM allows training of a classifier for general structured output labels.

  8. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    Note that for an arbitrary loss function , this approach defines a general class of algorithms named Tikhonov regularization. For instance, using the hinge loss leads to the support vector machine algorithm, and using the epsilon-insensitive loss leads to support vector regression.

  9. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...