When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A residual neural network (also referred to as a residual network or ResNet) [1] is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition , and won the ImageNet Large Scale Visual Recognition Challenge ( ILSVRC ) of that year.

  3. File:Residual network data structures in Android devices (IA ...

    en.wikipedia.org/wiki/File:Residual_network_data...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  4. Residual network - Wikipedia

    en.wikipedia.org/?title=Residual_network&redirect=no

    This page was last edited on 20 November 2017, at 05:18 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  5. Flow network - Wikipedia

    en.wikipedia.org/wiki/Flow_network

    The residual capacity of an arc e with respect to a pseudo-flow f is denoted c f, and it is the difference between the arc's capacity and its flow. That is, c f (e) = c(e) - f(e). From this we can construct a residual network, denoted G f (V, E f), with a capacity function c f which models the amount of available capacity on the set of arcs in ...

  6. File:Network flow residual SVG.svg - Wikipedia

    en.wikipedia.org/wiki/File:Network_flow_residual...

    Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

  7. Physics-informed neural networks - Wikipedia

    en.wikipedia.org/wiki/Physics-informed_neural...

    Physics-informed neural networks for solving Navier–Stokes equations. Physics-informed neural networks (PINNs), [1] also referred to as Theory-Trained Neural Networks (TTNs), [2] are a type of universal function approximators that can embed the knowledge of any physical laws that govern a given data-set in the learning process, and can be described by partial differential equations (PDEs).

  8. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.

  9. Markov blanket - Wikipedia

    en.wikipedia.org/wiki/Markov_blanket

    In a Bayesian network, the Markov boundary of node A includes its parents, children and the other parents of all of its children.. In statistics and machine learning, when one wants to infer a random variable with a set of variables, usually a subset is enough, and other variables are useless.