When.com Web Search

  1. Ad

    related to: faces edges and vertices meaning

Search results

  1. Results From The WOW.Com Content Network
  2. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.

  3. Vertex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces. For example, since a cube has 12 edges and 6 faces, the formula implies that it has eight vertices.

  4. Edge (geometry) - Wikipedia

    en.wikipedia.org/wiki/Edge_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces. For example, a cube has 8 vertices and 6 faces, and hence 12 edges.

  5. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    The number of vertices and edges has remained the same, but the number of faces has been reduced by 1. Therefore, proving Euler's formula for the polyhedron reduces to proving V − E + F = 1 {\displaystyle \ V-E+F=1\ } for this deformed, planar object.

  6. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    The elements of the set correspond to the vertices, edges, faces and so on of the polytope: vertices have rank 0, edges rank 1, etc. with the partially ordered ranking corresponding to the dimensionality of the geometric elements. The empty set, required by set theory, has a rank of −1 and is sometimes said to correspond to the null polytope.

  7. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    The property of having a similar arrangement of faces around each vertex can be replaced by any of the following equivalent conditions in the definition: The vertices of a convex regular polyhedron all lie on a sphere. All the dihedral angles of the polyhedron are equal; All the vertex figures of the polyhedron are regular polygons.

  8. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    None of its faces intersect except at their edges. The same number of faces meet at each of its vertices. Each Platonic solid can therefore be assigned a pair {p, q} of integers, where p is the number of edges (or, equivalently, vertices) of each face, and q is the number of

  9. List of Johnson solids - Wikipedia

    en.wikipedia.org/wiki/List_of_Johnson_solids

    The points, lines, and polygons of a polyhedron are referred to as its vertices, edges, and faces, respectively. [1] A polyhedron is considered to be convex if: [2] The shortest path between any two of its vertices lies either within its interior or on its boundary. None of its faces are coplanar—they do not share the same plane and do not ...