Search results
Results From The WOW.Com Content Network
A variety X over an uncountable algebraically closed field k is uniruled if and only if there is a rational curve passing through every k-point of X. By contrast, there are varieties over the algebraic closure k of a finite field which are not uniruled but have a rational curve through every k-point.
Every irreducible complex algebraic curve is birational to a unique smooth projective curve, so the theory for curves is trivial. The case of surfaces was first investigated by the geometers of the Italian school around 1900; the contraction theorem of Guido Castelnuovo essentially describes the process of constructing a minimal model of any smooth projective surface.
In dimension 3, there are smooth complex Fano varieties which are not rational, for example cubic 3-folds in P 4 (by Clemens - Griffiths) and quartic 3-folds in P 4 (by Iskovskikh - Manin). Iskovskih ( 1977 , 1978 , 1979 ) classified the smooth Fano 3-folds with second Betti number 1 into 17 classes, and Mori & Mukai (1981) classified the ...
Every rational variety, including the projective spaces, is rationally connected, but the converse is false. The class of the rationally connected varieties is thus a generalization of the class of the rational varieties. Unirational varieties are rationally connected, but it is not known if the converse holds.
The algebraic ones are exactly the 2-dimensional abelian varieties. Most of their theory is a special case of the theory of higher-dimensional tori or abelian varieties. Criteria to be a product of two elliptic curves (up to isogeny) were a popular study in the nineteenth century. Invariants: The plurigenera are all 1.
Gröbner basis computation is one of the main practical tools for solving systems of polynomial equations and computing the images of algebraic varieties under projections or rational maps. Gröbner basis computation can be seen as a multivariate, non-linear generalization of both Euclid's algorithm for computing polynomial greatest common ...
Jacobians of curves are naturally equipped with a principal polarisation as soon as one picks an arbitrary rational base point on the curve, and the curve can be reconstructed from its polarised Jacobian when the genus is >. Not all principally polarised abelian varieties are Jacobians of curves; see the Schottky problem.
The number of curves with self intersection number −1 is finite and depends only on the degree (unless the degree is 8). A (−1)-curve is a rational curve with self intersection number −1. For d > 2, the image of such a curve in projective space under the anti-canonical embedding is a line.