Ad
related to: cube root for positive number calculator
Search results
Results From The WOW.Com Content Network
If this definition is used, the cube root of a negative number is a negative number. The three cube roots of 1. If x and y are allowed to be complex, then there are three solutions (if x is non-zero) and so x has three cube roots. A real number has one real cube root and two further cube roots which form a complex conjugate pair.
A square root of a number x is a number r which, when squared, becomes x: =. Every positive real number has two square roots, one positive and one negative. For example, the two square roots of 25 are 5 and −5. The positive square root is also known as the principal square root, and is denoted with a radical sign:
Here is an angle in the unit circle; taking 1 / 3 of that angle corresponds to taking a cube root of a complex number; adding −k 2 π / 3 for k = 1, 2 finds the other cube roots; and multiplying the cosines of these resulting angles by corrects for scale.
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
A cubic field is called a pure cubic field if it can be obtained by adjoining the real cube root of a cube-free positive integer n to the rational number field Q. Such fields are always complex cubic fields since each positive number has two complex non-real cube roots.
Roots are a special type of exponentiation using a fractional exponent. For example, the square root of a number is the same as raising the number to the power of and the cube root of a number is the same as raising the number to the power of .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Finding roots in a specific region of the complex plane, typically the real roots or the real roots in a given interval (for example, when roots represents a physical quantity, only the real positive ones are interesting). For finding one root, Newton's method and other general iterative methods work generally well.