Ad
related to: idoe standards correlation calculator excel chart format series x
Search results
Results From The WOW.Com Content Network
In the analysis of data, a correlogram is a chart of correlation statistics. For example, in time series analysis, a plot of the sample autocorrelations versus (the time lags) is an autocorrelogram. If cross-correlation is plotted, the result is called a cross-correlogram.
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
Some correlation statistics, such as the rank correlation coefficient, are also invariant to monotone transformations of the marginal distributions of X and/or Y. Pearson/Spearman correlation coefficients between X and Y are shown when the two variables' ranges are unrestricted, and when the range of X is restricted to the interval (0,1).
In time series analysis and statistics, the cross-correlation of a pair of random process is the correlation between values of the processes at different times, as a function of the two times. Let ( X t , Y t ) {\displaystyle (X_{t},Y_{t})} be a pair of random processes, and t {\displaystyle t} be any point in time ( t {\displaystyle t} may be ...
If Y always takes on the same values as X, we have the covariance of a variable with itself (i.e. ), which is called the variance and is more commonly denoted as , the square of the standard deviation. The correlation of a variable with itself is always 1 (except in the degenerate case where the two variances are zero because X always takes on ...
In statistics, the correlation ratio is a measure of the curvilinear relationship between the statistical dispersion within individual categories and the dispersion across the whole population or sample. The measure is defined as the ratio of two standard deviations representing these types of variation.
The transformation suggested by Cochrane and Orcutt disregards the first observation of a time series, causing a loss of efficiency that can be substantial in small samples. [3] A superior transformation, which retains the first observation with a weight of ( 1 − ρ 2 ) {\displaystyle {\sqrt {(1-\rho ^{2})}}} was first suggested by Prais and ...
In statistics, canonical-correlation analysis (CCA), also called canonical variates analysis, is a way of inferring information from cross-covariance matrices.If we have two vectors X = (X 1, ..., X n) and Y = (Y 1, ..., Y m) of random variables, and there are correlations among the variables, then canonical-correlation analysis will find linear combinations of X and Y that have a maximum ...