When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Faraday constant - Wikipedia

    en.wikipedia.org/wiki/Faraday_constant

    Faraday constant. In physical chemistry, the Faraday constant (symbol F, sometimes stylized as ℱ) is a physical constant defined as the quotient of the total electric charge (q) by the amount (n) of elementary charge carriers in any given sample of matter: F = q/n; it is expressed in units of coulombs per mole (C/mol).

  3. Faraday's laws of electrolysis - Wikipedia

    en.wikipedia.org/wiki/Faraday's_laws_of_electrolysis

    For Faraday's first law, M, F, v are constants; thus, the larger the value of Q, the larger m will be. For Faraday's second law, Q, F, v are constants; thus, the larger the value of (equivalent weight), the larger m will be. In the simple case of constant- current electrolysis, Q = It, leading to. and then to. where: t is the total time the ...

  4. Electric charge - Wikipedia

    en.wikipedia.org/wiki/Electric_charge

    Electric charge is a conserved property: the net charge of an isolated system, the quantity of positive charge minus the amount of negative charge, cannot change. Electric charge is carried by subatomic particles. In ordinary matter, negative charge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms.

  5. Coulomb - Wikipedia

    en.wikipedia.org/wiki/Coulomb

    The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). [1][2] It is equal to the electric charge delivered by a 1 ampere current in 1 second and is defined in terms of the elementary charge e, at about 6.241 509 × 1018 e. [2][1]

  6. Michael Faraday - Wikipedia

    en.wikipedia.org/wiki/Michael_Faraday

    Michael Faraday FRS (/ ˈfærədeɪ, - di /; 22 September 1791 – 25 August 1867) was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic induction, diamagnetism and electrolysis. Although Faraday received little formal education, as ...

  7. Faraday efficiency - Wikipedia

    en.wikipedia.org/wiki/Faraday_efficiency

    In electrochemistry, Faraday efficiency (also called faradaic efficiency, faradaic yield, coulombic efficiency, or current efficiency) describes the efficiency with which charge (electrons) is transferred in a system facilitating an electrochemical reaction. The word "Faraday" in this term has two interrelated aspects: first, the historic unit ...

  8. Farad - Wikipedia

    en.wikipedia.org/wiki/Farad

    The farad (symbol: F) is the unit of electrical capacitance, the ability of a body to store an electrical charge, in the International System of Units (SI), equivalent to 1 coulomb per volt (C/V). [1] It is named after the English physicist Michael Faraday (1791–1867). In SI base units 1 F = 1 kg −1 ⋅ m −2 ⋅ s 4 ⋅ A 2.

  9. Faradaic current - Wikipedia

    en.wikipedia.org/wiki/Faradaic_current

    The limiting current in electrochemistry is the limiting value of a faradaic current that is approached as the rate of charge transfer to an electrode is increased. The limiting current can be approached, for example, by increasing the electric potential or decreasing the rate of mass transfer to the electrode. It is independent of the applied ...