When.com Web Search

  1. Ad

    related to: all cube numbers from 1 to 10

Search results

  1. Results From The WOW.Com Content Network
  2. Cube (algebra) - Wikipedia

    en.wikipedia.org/wiki/Cube_(algebra)

    Cube (algebra) y = x3 for values of 1 ≤ x ≤ 25. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 23 = 8 or (x + 1)3. The cube is also the number ...

  3. List of numbers - Wikipedia, the free encyclopedia

    en.wikipedia.org/wiki/List_of_numbers

    A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.

  4. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    The primes of the form 2n+1 are the odd primes, including all primes other than 2. Some sequences have alternate names: 4n+1 are Pythagorean primes, 4n+3 are the integer Gaussian primes, and 6n+5 are the Eisenstein primes (with 2 omitted). The classes 10n+d (d = 1, 3, 7, 9) are primes ending in the decimal digit d.

  5. IUPAC numerical multiplier - Wikipedia

    en.wikipedia.org/wiki/IUPAC_numerical_multiplier

    The numbers 200-900 would be confused easily with 22 to 29 if they were used in chemistry. khīlioi = 1000, diskhīlioi = 2000, triskhīlioi = 3000, etc. 13 to 19 are formed by starting with the Greek word for the number of ones, followed by και (the Greek word for 'and'), followed by δέκα (the Greek word for 'ten').

  6. Cube root - Wikipedia

    en.wikipedia.org/wiki/Cube_root

    Cube root. In mathematics, a cube root of a number x is a number y such that y3 = x. All nonzero real numbers have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of 8, denoted , is 2, because 23 = 8, while the other ...

  7. Proof by exhaustion - Wikipedia

    en.wikipedia.org/wiki/Proof_by_exhaustion

    Proof by exhaustion can be used to prove that if an integer is a perfect cube, then it must be either a multiple of 9, 1 more than a multiple of 9, or 1 less than a multiple of 9. [3] Proof: Each perfect cube is the cube of some integer n, where n is either a multiple of 3, 1 more than a multiple of 3, or 1 less than a multiple of 3. So these ...

  8. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A cube has all multiplicities divisible by 3 (it is of the form a 3 for some a). The first: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728 (sequence A000578 in the OEIS). A perfect power has a common divisor m > 1 for all multiplicities (it is of the form a m for some a > 1 and m > 1).

  9. 1729 (number) - Wikipedia

    en.wikipedia.org/wiki/1729_(number)

    Duodecimal. 1001 12. Hexadecimal. 6C1 16. 1729 is the natural number following 1728 and preceding 1730. It is the first nontrivial taxicab number, expressed as the sum of two cubic numbers in two different ways. It is also known as the Ramanujan number or Hardy–Ramanujan number, named after G. H. Hardy and Srinivasa Ramanujan.