When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    Bernoulli's principle can be derived from the principle of conservation of energy. This states that, in a steady flow, the sum of all forms of energy in a fluid is the same at all points that are free of viscous forces. This requires that the sum of kinetic energy, potential energy and internal energy remains constant.

  3. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    The second equation is the incompressible constraint, stating the flow velocity is a solenoidal field (the order of the equations is not causal, but underlines the fact that the incompressible constraint is not a degenerate form of the continuity equation, but rather of the energy equation, as it will become clear in the following).

  4. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    This equation applies to a steady, uniform, isentropic flow. There are several observations that can be made from an analysis of Eq. (9.26). They are: For a subsonic flow in an expanding conduit (M < 1 and dA > 0), the flow is decelerating (dV < 0). For a subsonic flow in a converging conduit (M < 1 and dA < 0), the flow is accelerating (dV > 0).

  5. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    A flow that is not a function of time is called steady flow. Steady-state flow refers to the condition where the fluid properties at a point in the system do not change over time. Time dependent flow is known as unsteady (also called transient [8]). Whether a particular flow is steady or unsteady, can depend on the chosen frame of reference.

  6. Standard step method - Wikipedia

    en.wikipedia.org/wiki/Standard_Step_Method

    A diagram showing the relationship for flow depth (y) and total Energy (E) for a given flow (Q). Note the location of critical flow, subcritical flow, and supercritical flow. The energy equation used for open channel flow computations is a simplification of the Bernoulli Equation (See Bernoulli Principle ), which takes into account pressure ...

  7. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    Examples of degenerate cases—with the non-linear terms in the Navier–Stokes equations equal to zero—are Poiseuille flow, Couette flow and the oscillatory Stokes boundary layer. But also, more interesting examples, solutions to the full non-linear equations, exist, such as Jeffery–Hamel flow , Von Kármán swirling flow , stagnation ...

  8. First law of thermodynamics (fluid mechanics) - Wikipedia

    en.wikipedia.org/wiki/First_law_of...

    is the flow velocity. and is the heat flux vector. Because it expresses conservation of total energy, this is sometimes referred to as the energy balance equation of continuous media. The first law is used to derive the non-conservation form of the Navier–Stokes equations. [3]

  9. Stream function - Wikipedia

    en.wikipedia.org/wiki/Stream_function

    A shift in the position of the reference point effectively adds a constant (for steady flow) or a function solely of time (for nonsteady flow) to the stream function at every point . The shift in the stream function, Δ ψ {\displaystyle \Delta \psi } , is equal to the total volumetric flux, per unit thickness, through the surface that extends ...