Search results
Results From The WOW.Com Content Network
TetR dimerizes by making hydrophobic contacts within the regulatory core. There is a binding cavity for tetracycline in the outer helices of the regulatory domain. When tetracycline binds this cavity, it causes a conformational change that affects the DNA-binding domain so that TetR is no longer able to bind DNA.
Bacteria have a system that allows tetracyclines to be transported into the cell, whereas human cells do not. Human cells therefore are spared the effects of tetracycline on protein synthesis. [1] Tetracyclines retain an important role in medicine, although their usefulness has been reduced with the onset of antibiotic resistance. [2]
Tetracycline-controlled gene expression is based upon the mechanism of resistance to tetracycline antibiotic treatment found in gram-negative bacteria. In nature, the P tet promoter expresses TetR (the repressor ) and TetA, the protein that pumps tetracycline antibiotic out of the cell.
Several recent studies have suggested non-trophic species interactions such as habitat modification and mutualisms can be important determinants of food web structures. However, it remains unclear whether these findings generalize across ecosystems, and whether non-trophic interactions affect food webs randomly, or affect specific trophic ...
It works by inhibiting protein synthesis in bacteria. [3] Tetracycline was patented in 1953 [6] and was approved for prescription use in 1954. [7] [8] It is on the World Health Organization's List of Essential Medicines. [9] Tetracycline is available as a generic medication. [3] Tetracycline was originally made from bacteria of the genus ...
Narrow-spectrum antibiotics have low propensity to induce bacterial resistance and are less likely to disrupt the microbiome (normal microflora). [3] On the other hand, indiscriminate use of broad-spectrum antibiotics may not only induce the development of bacterial resistance and promote the emergency of multidrug-resistant organisms, but also cause off-target effects due to dysbiosis.
The microbial food web refers to the combined trophic interactions among microbes in aquatic environments. These microbes include viruses, bacteria, algae, heterotrophic protists (such as ciliates and flagellates). [1] In aquatic ecosystems, microbial food webs are essential because they form the basis for the cycling of nutrients and energy.
Microbiological resistance is the most common and occurs from genes, mutated or inherited, that allow the bacteria to resist the mechanism to kill the microbe associated with certain antibiotics. Clinical resistance is shown through the failure of many therapeutic techniques where the bacteria that are normally susceptible to a treatment become ...