When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    Determinants can also be defined by some of their properties. Namely, the determinant is the unique function defined on the n × n matrices that has the four following properties: The determinant of the identity matrix is 1. The exchange of two rows multiplies the determinant by −1.

  3. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/.../Jacobian_matrix_and_determinant

    [a] This means that the function that maps y to f(x) + J(x) ⋅ (y – x) is the best linear approximation of f(y) for all points y close to x. The linear map h → J(x) ⋅ h is known as the derivative or the differential of f at x. When m = n, the Jacobian matrix is square, so its determinant is a well-defined function of x, known as the ...

  4. Functional determinant - Wikipedia

    en.wikipedia.org/wiki/Functional_determinant

    The most popular of which for computing functional determinants is the zeta function regularization. [1] For instance, this allows for the computation of the determinant of the Laplace and Dirac operators on a Riemannian manifold, using the Minakshisundaram–Pleijel zeta function. Otherwise, it is also possible to consider the quotient of two ...

  5. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then

  6. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The determinant of the Hessian matrix, when evaluated at a critical point of a function, is equal to the Gaussian curvature of the function considered as a manifold. The eigenvalues of the Hessian at that point are the principal curvatures of the function, and the eigenvectors are the principal directions of curvature.

  7. Wronskian - Wikipedia

    en.wikipedia.org/wiki/Wronskian

    In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef WroĊ„ski, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.

  8. Multilinear map - Wikipedia

    en.wikipedia.org/wiki/Multilinear_map

    Any bilinear map is a multilinear map. For example, any inner product on a -vector space is a multilinear map, as is the cross product of vectors in .; The determinant of a matrix is an alternating multilinear function of the columns (or rows) of a square matrix.

  9. Vandermonde matrix - Wikipedia

    en.wikipedia.org/wiki/Vandermonde_matrix

    The determinant of a square Vandermonde matrix is called a Vandermonde polynomial or Vandermonde determinant. ... discriminant is a polynomial function of the ...