Search results
Results From The WOW.Com Content Network
Speed; system unit code (alternative) symbol or abbrev. notes sample default conversion combinations SI: metre per second: m/s m/s US spelling: meter per second 1.0 m/s (3.3 ft/s)
This template is designed to provide easier-to-read unit conversions for endurance figures, which are often given as distance @ speed, by using Template:Convert for the unit conversions. Usage [ edit ]
Pace [6] in minutes per kilometre or mile vs. slope angle resulting from Naismith's rule [7] for basal speeds of 5 and 4 km / h. [n 1]The original Naismith's rule from 1892 says that one should allow one hour per three miles on the map and an additional hour per 2000 feet of ascent.
To help compare different orders of magnitude, the following list describes various speed levels between approximately 2.2 × 10 −18 m/s and 3.0 × 10 8 m/s (the speed of light). Values in bold are exact.
Speed is the magnitude of velocity (a vector), which indicates additionally the direction of motion. Speed has the dimensions of distance divided by time. The SI unit of speed is the metre per second (m/s), but the most common unit of speed in everyday usage is the kilometre per hour (km/h) or, in the US and the UK, miles per hour (mph).
where a 0 is 1,225 km/h (661.45 kn) (the standard speed of sound at 15 °C), M is the Mach number, P is static pressure, and P 0 is standard sea level pressure (1013.25 hPa). Combining the above with the expression for Mach number gives EAS as a function of impact pressure and static pressure (valid for subsonic flow):
The time it takes a vehicle to accelerate from 0 to 60 miles per hour (97 km/h or 27 m/s), often said as just "zero to sixty" or "nought to sixty", is a commonly used performance measure for automotive acceleration in the United States and the United Kingdom. In the rest of the world, 0 to 100 km/h (0 to 62.1 mph) is used.
At 0 °C (32 °F), the speed of sound in air is about 331 m/s (1,086 ft/s; 1,192 km/h; 740 mph; 643 kn). [1] The speed of sound in an ideal gas depends only on its temperature and composition. The speed has a weak dependence on frequency and pressure in ordinary air, deviating slightly from ideal behavior.