Search results
Results From The WOW.Com Content Network
In secondary active transport, also known as cotransport or coupled transport, energy is used to transport molecules across a membrane; however, in contrast to primary active transport, there is no direct coupling of ATP. Instead, it relies upon the electrochemical potential difference created by pumping ions in/out of the cell. [18]
A comparison of transport proteins [1]. An antiporter (also called exchanger or counter-transporter) is an integral membrane protein that uses secondary active transport to move two or more molecules in opposite directions across a phospholipid membrane.
Secondary active transport is when one solute moves down the electrochemical gradient to produce enough energy to force the transport of another solute from low concentration to high concentration. [citation needed] An example of where this occurs is in the movement of glucose within the proximal convoluted tubule (PCT).
Cotransporters are a subcategory of membrane transport proteins (transporters) that couple the favorable movement of one molecule with its concentration gradient and unfavorable movement of another molecule against its concentration gradient. They enable coupled or cotransport (secondary active transport) and include antiporters and symporters.
Secondary active transport commonly uses types of carrier proteins, typically symporters and antiporters. Symporter proteins couple the transport of one molecule down its concentration gradient to the transport of another molecule against its concentration gradient, and both molecules diffuse in the same direction .
The Na–K–Cl cotransporter (NKCC) is a transport protein that aids in the secondary active transport of sodium, potassium, and chloride into cells. [1] In humans there are two isoforms of this membrane transport protein, NKCC1 and NKCC2, encoded by two different genes (SLC12A2 and SLC12A1 respectively). Two isoforms of the NKCC1/Slc12a2 gene ...
The two ways in which glucose uptake can take place are facilitated diffusion (a passive process) and secondary active transport (an active process which on the ion-gradient which is established through the hydrolysis of ATP, known as primary active transport). Active transport is the movement of ions or molecules going against the ...
The transport of glucose across the proximal tubule cell membrane involves a complex process of secondary active transport (also known as co-transport). [3] This process begins with the Na + /K + ATPase on the basolateral membrane. This enzyme uses ATP to pump 3 sodium ions out of the cell into the blood while bringing 2 potassium ions into the ...