Search results
Results From The WOW.Com Content Network
There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient. This process is in contrast to passive transport , which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area ...
Cotransporters are a subcategory of membrane transport proteins (transporters) that couple the favorable movement of one molecule with its concentration gradient and unfavorable movement of another molecule against its concentration gradient. They enable coupled or cotransport (secondary active transport) and include antiporters and symporters.
A comparison of transport proteins [1]. An antiporter (also called exchanger or counter-transporter) is an integral membrane protein that uses secondary active transport to move two or more molecules in opposite directions across a phospholipid membrane.
The transport of glucose across the proximal tubule cell membrane involves a complex process of secondary active transport (also known as co-transport). [3] This process begins with the Na + /K + ATPase on the basolateral membrane. This enzyme uses ATP to pump 3 sodium ions out of the cell into the blood while bringing 2 potassium ions into the ...
The two ways in which glucose uptake can take place are facilitated diffusion (a passive process) and secondary active transport (an active process which on the ion-gradient which is established through the hydrolysis of ATP, known as primary active transport). Active transport is the movement of ions or molecules going against the ...
The Na + /K +-ATPase enzyme is active (i.e. it uses energy from ATP). For every ATP molecule that the pump uses, three sodium ions are exported and two potassium ions are imported. [ 1 ] Thus, there is a net export of a single positive charge per pump cycle.
Secondary active transport is when one solute moves down the electrochemical gradient to produce enough energy to force the transport of another solute from low concentration to high concentration. [citation needed] An example of where this occurs is in the movement of glucose within the proximal convoluted tubule (PCT).
This creates and maintains an electrochemical gradient of H+ from outside the cell to inside the cell. Secondary active transport carriers use this H+ electrochemical gradient across the plasma membrane to co-transport solutes into the cell, therefore allowing nutrient uptake to occur. [13] Tip-growing systems.