Ad
related to: ester examples chemistry problems with solutions
Search results
Results From The WOW.Com Content Network
An ester of carboxylic acid.R stands for any group (organic or inorganic) and R′ stands for organyl group.. In chemistry, an ester is a compound derived from an acid (organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group (−OH) of that acid is replaced by an organyl group (−R).
An ester of a carboxylic acid.R stands for any group (typically hydrogen or organyl) and R ′ stands for any organyl group.. In chemistry, an ester is a compound derived from an acid (organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group (−OH) of that acid is replaced by an organyl group (R ′). [1]
In organic chemistry, an active ester is an ester functional group that is highly susceptible toward nucleophilic attack. Activation can be imparted by modifications of the acyl or the alkoxy components of a normal ester, say ethyl acetate .
In organic chemistry, a nitrate ester is an organic functional group with the formula R−ONO 2, where R stands for any organyl group. They are the esters of nitric acid and alcohols . A well-known example is nitroglycerin , which is not a nitro compound, despite its name.
Examples of this [contradictory] include the common undergraduate organic lab experiment involving the acetylation of salicylic acid to yield aspirin. Fischer esterification is primarily a thermodynamically-controlled process: because of its slowness, the most stable ester tends to be the major product. This can be a desirable trait if there ...
Acid–base-catalysed hydrolyses are very common; one example is the hydrolysis of amides or esters. Their hydrolysis occurs when the nucleophile (a nucleus-seeking agent, e.g., water or hydroxyl ion) attacks the carbon of the carbonyl group of the ester or amide. In an aqueous base, hydroxyl ions are better nucleophiles than polar molecules ...
For example, the amino acid tyrosine could be protected as a benzyl ester on the carboxyl group, a fluorenylmethylenoxy carbamate on the amine group, and a tert-butyl ether on the phenol group. The benzyl ester can be removed by hydrogenolysis, the fluorenylmethylenoxy group (Fmoc) by bases (such as piperidine), and the phenolic tert -butyl ...
Protein folding problem: Is it possible to predict the secondary, tertiary and quaternary structure of a polypeptide sequence based solely on the sequence and environmental information? Inverse protein-folding problem: Is it possible to design a polypeptide sequence which will adopt a given structure under certain environmental conditions?