Search results
Results From The WOW.Com Content Network
A very large number raised to a very large power is "approximately" equal to the larger of the following two values: the first value and 10 to the power the second. For example, for very large n {\displaystyle n} there is n n ≈ 10 n {\displaystyle n^{n}\approx 10^{n}} (see e.g. the computation of mega ) and also 2 n ≈ 10 n {\displaystyle 2 ...
One of the earliest examples of this is The Sand Reckoner, in which Archimedes gave a system for naming large numbers. To do this, he called the numbers up to a myriad myriad (10 8 ) "first numbers" and called 10 8 itself the "unit of the second numbers".
Large numbers in mathematics may be large and finite, like a googol, or the large infinite cardinal numbers which have a subcategory here. Subcategories This category has the following 2 subcategories, out of 2 total.
These numbers have been proved prime by computer with a primality test for their form, for example the Lucas–Lehmer primality test for Mersenne numbers. “!” is the factorial, “#” is the primorial, and () is the third cyclotomic polynomial, defined as + +.
For an event X that occurs with very low probability of 0.0000001%, or once in one billion trials, in any single sample (see also almost never), considering 1,000,000,000 as a "truly large" number of independent samples gives the probability of occurrence of X equal to 1 − 0.999999999 1000000000 ≈ 0.63 = 63% and a number of independent ...
Kasner used it to illustrate the difference between an unimaginably large number and infinity, and in this role it is sometimes used in teaching mathematics. To put in perspective the size of a googol, the mass of an electron, just under 10 −30 kg, can be compared to the mass of the visible universe, estimated at between 10 50 and 10 60 kg. [ 5 ]
They are called the strong law of large numbers and the weak law of large numbers. [ 16 ] [ 1 ] Stated for the case where X 1 , X 2 , ... is an infinite sequence of independent and identically distributed (i.i.d.) Lebesgue integrable random variables with expected value E( X 1 ) = E( X 2 ) = ... = μ , both versions of the law state that the ...
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.