Ad
related to: elongation biology diagram chegg
Search results
Results From The WOW.Com Content Network
The elongation and membrane targeting stages of eukaryotic translation. The ribosome is green and yellow, the tRNAs are dark-blue, and the other proteins involved are light-blue. Elongation depends on eukaryotic elongation factors. At the end of the initiation step, the mRNA is positioned so that the next codon can be translated during the ...
These data suggest that telomere elongation occurs only in S phase. Additional experiments with greater time resolution support this hypothesis and narrow the timeframe to late S phase. Researchers tied telomere elongation in these experiments to telomerase activity by observing that in an S. cerevisiae strain with a dysfunctional ALT pathway ...
Among the proteins recruited to polymerase are elongation factors, thus called because they stimulate transcription elongation. [23] There are different classes of elongation factors. Some factors can increase the overall rate of transcribing, some can help the polymerase through transient pausing sites, and some can assist the polymerase to ...
The elongation factor EF-Tu has been shown to stabilize the bond by preventing weak acyl linkages from being hydrolyzed. [ 12 ] All together, the actual stability of the ester bond influences the susceptibility of the aa-tRNA to hydrolysis within the body at physiological pH and ion concentrations.
AP Biology/Genes and How They Work; Proteomics/Protein Primary Structure/Genetic Code; An Introduction to Molecular Biology/Transcription of RNA and its modification; Principles of Biochemistry/Cell Metabolism II: RNA transcription; Usage on et.wikipedia.org Transkriptsioon (geneetika) Usage on eu.wikipedia.org Transkripzio (genetika)
Elongation is the most rapid step in translation. [3] In bacteria , it proceeds at a rate of 15 to 20 amino acids added per second (about 45-60 nucleotides per second). [ citation needed ] In eukaryotes the rate is about two amino acids per second (about 6 nucleotides read per second).
EF-G (elongation factor G, historically known as translocase) is a prokaryotic elongation factor involved in mRNA translation. As a GTPase , EF-G catalyzes the movement (translocation) of transfer RNA (tRNA) and messenger RNA (mRNA) through the ribosome .
Elongation that occurs throughout the formation of the neural plate and closure of the neural tube is vital; the closing areas of the neural tube are seen to have very increased elongation activity in the midline compared to already closed areas when the plate was beginning to shape itself into a tube. [5] Bending and Convergence of the Neural ...