Search results
Results From The WOW.Com Content Network
In mathematics, proof by contrapositive, or proof by contraposition, is a rule of inference used in proofs, where one infers a conditional statement from its contrapositive. [15] In other words, the conclusion "if A, then B" is inferred by constructing a proof of the claim "if not B, then not A" instead. More often than not, this approach is ...
Let S be a statement of the form P implies Q (P → Q). Then the converse of S is the statement Q implies P (Q → P). In general, the truth of S says nothing about the truth of its converse, [2] unless the antecedent P and the consequent Q are logically equivalent. For example, consider the true statement "If I am a human, then I am mortal."
Proof by contraposition infers the statement "if p then q" by establishing the logically equivalent contrapositive statement: "if not q then not p". For example, contraposition can be used to establish that, given an integer x {\displaystyle x} , if x 2 {\displaystyle x^{2}} is even, then x {\displaystyle x} is even:
This is the contrapositive of the first statement, and it must be true if and only if the original statement is true. Example 2. If an animal is a dog, then it has four legs. My cat has four legs. Therefore, my cat is a dog.
It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument. The history of the inference rule modus tollens goes back to antiquity. [4]
The inverse and the converse of a conditional are logically equivalent to each other, just as the conditional and its contrapositive are logically equivalent to each other. [1] But the inverse of a conditional cannot be inferred from the conditional itself (e.g., the conditional might be true while its inverse might be false [2]). For example ...
For example, there exist simple algebraic expressions for angle bisectors in terms of the sides of the triangle. Equating two of these expressions and algebraically manipulating the equation results in a product of two factors which equal 0, but only one of them ( a − b ) can equal 0 and the other must be positive.
The earliest form of mathematics was phenomenological. For example, if someone could draw a reasonable picture, or give a convincing description, then that met all the criteria for something to be described as a mathematical “fact”. On occasion, analogical arguments took place, or even by “invoking the gods”. The idea that mathematical ...