Search results
Results From The WOW.Com Content Network
This differs from the (standard, or forward) Euler method in that the function is evaluated at the end point of the step, instead of the starting point. The backward Euler method is an implicit method , meaning that the formula for the backward Euler method has y n + 1 {\displaystyle y_{n+1}} on both sides, so when applying the backward Euler ...
The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original ...
Assuming that the quantity (,) on the right hand side of the equation can be thought of as the slope of the solution sought at any point (,), this can be combined with the Euler estimate of the next point to give the slope of the tangent line at the right end-point. Next the average of both slopes is used to find the corrected coordinates of ...
Equivalently, the slope could be estimated by employing positions x − h and x. Another two-point formula is to compute the slope of a nearby secant line through the points (x − h, f(x − h)) and (x + h, f(x + h)). The slope of this line is (+) ().
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
The following procedure provides a method that may be used to determine the displacement and slope at a point on the elastic curve of a beam using the moment-area theorem. Determine the reaction forces of a structure and draw the M/EI diagram of the structure.
The simplest is the slope-intercept form: = +, from which one can immediately see the slope a and the initial value () =, which is the y-intercept of the graph = (). Given a slope a and one known value () =, we write the point-slope form:
The name of the method comes from the fact that in the formula above, the function giving the slope of the solution is evaluated at = + / = + +, the midpoint between at which the value of () is known and + at which the value of () needs to be found.