When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, a 2,1 represents the element at the second row and first column of the matrix. In mathematics, a matrix (pl.: matrices) is a rectangular array or table of numbers, symbols, or expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object.

  3. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    If the matrix entries are real numbers, the matrix A can be used to represent two linear maps: one that maps the standard basis vectors to the rows of A, and one that maps them to the columns of A. In either case, the images of the basis vectors form a parallelogram that represents the image of the unit square under the mapping.

  4. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Synonym for (0,1)-matrix, binary matrix or Boolean matrix. Can be used to represent a k-adic relation. Markov matrix: A matrix of non-negative real numbers, such that the entries in each row sum to 1. Metzler matrix: A matrix whose off-diagonal entries are non-negative. Monomial matrix: A square matrix with exactly one non-zero entry in each ...

  5. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Such a matrix A is said to be similar to the diagonal matrix Λ or diagonalizable. The matrix Q is the change of basis matrix of the similarity transformation. Essentially, the matrices A and Λ represent the same linear transformation expressed in two different bases. The eigenvectors are used as the basis when representing the linear ...

  6. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    The transpose of an invertible matrix is also invertible, and its inverse is the transpose of the inverse of the original matrix. The notation A −T is sometimes used to represent either of these equivalent expressions.

  7. Trace (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Trace_(linear_algebra)

    If a 2 x 2 real matrix has zero trace, its square is a diagonal matrix. The trace of a 2 × 2 complex matrix is used to classify Möbius transformations. First, the matrix is normalized to make its determinant equal to one. Then, if the square of the trace is 4, the corresponding transformation is parabolic.

  8. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Since matrix multiplication forms the basis for many algorithms, and many operations on matrices even have the same complexity as matrix multiplication (up to a multiplicative constant), the computational complexity of matrix multiplication appears throughout numerical linear algebra and theoretical computer science.

  9. Idempotent matrix - Wikipedia

    en.wikipedia.org/wiki/Idempotent_matrix

    An idempotent matrix is always diagonalizable. [3] Its eigenvalues are either 0 or 1: if is a non-zero eigenvector of some idempotent matrix and its associated eigenvalue, then = = = = =, which implies {,}.