When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Absolute value - Wikipedia

    en.wikipedia.org/wiki/Absolute_value

    The real absolute value function is an example of a continuous function that achieves a global minimum where the derivative does not exist. The subdifferential of | x | at x = 0 is the interval [−1, 1]. [14] The complex absolute value function is continuous everywhere but complex differentiable nowhere because it violates the Cauchy–Riemann ...

  3. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    The feasible regions of linear programming are defined by a set of inequalities. In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size.

  4. List of inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_inequalities

    Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution

  5. Absolute value (algebra) - Wikipedia

    en.wikipedia.org/wiki/Absolute_value_(algebra)

    The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).

  6. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    In general, the value of the norm is dependent on the spectrum of : For a vector with a Euclidean norm of one, the value of ‖ ‖ is bounded from below and above by the smallest and largest absolute eigenvalues of respectively, where the bounds are achieved if coincides with the corresponding (normalized) eigenvectors.

  7. Hardy–Littlewood inequality - Wikipedia

    en.wikipedia.org/wiki/Hardy–Littlewood_inequality

    Let random variable is Normally distributed with mean and finite non-zero variance , then using the Hardy–Littlewood inequality, it can be proved that for < < the reciprocal moment for the absolute value of is

  8. Triangle inequality - Wikipedia

    en.wikipedia.org/wiki/Triangle_inequality

    The first of these quadratic inequalities requires r to range in the region beyond the value of the positive root of the quadratic equation r 2 + r − 1 = 0, i.e. r > φ − 1 where φ is the golden ratio. The second quadratic inequality requires r to range between 0 and the positive root of the quadratic equation r 2 − r − 1 = 0, i.e. 0 ...

  9. Littlewood–Offord problem - Wikipedia

    en.wikipedia.org/wiki/Littlewood–Offord_problem

    The first upper bound for this problem was proven (for d = 1 and d = 2) in 1938 by John Edensor Littlewood and A. Cyril Offord. [1] This Littlewood–Offord lemma states that if S is a set of n real or complex numbers of absolute value at least one and A is any disc of radius one, then not more than ( c log ⁡ n / n ) 2 n {\displaystyle {\Big ...