Search results
Results From The WOW.Com Content Network
The real absolute value function is an example of a continuous function that achieves a global minimum where the derivative does not exist. The subdifferential of | x | at x = 0 is the interval [−1, 1]. [14] The complex absolute value function is continuous everywhere but complex differentiable nowhere because it violates the Cauchy–Riemann ...
The feasible regions of linear programming are defined by a set of inequalities. In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size.
Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution
The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).
In general, the value of the norm is dependent on the spectrum of : For a vector with a Euclidean norm of one, the value of ‖ ‖ is bounded from below and above by the smallest and largest absolute eigenvalues of respectively, where the bounds are achieved if coincides with the corresponding (normalized) eigenvectors.
Let random variable is Normally distributed with mean and finite non-zero variance , then using the Hardy–Littlewood inequality, it can be proved that for < < the reciprocal moment for the absolute value of is
The first of these quadratic inequalities requires r to range in the region beyond the value of the positive root of the quadratic equation r 2 + r − 1 = 0, i.e. r > φ − 1 where φ is the golden ratio. The second quadratic inequality requires r to range between 0 and the positive root of the quadratic equation r 2 − r − 1 = 0, i.e. 0 ...
The first upper bound for this problem was proven (for d = 1 and d = 2) in 1938 by John Edensor Littlewood and A. Cyril Offord. [1] This Littlewood–Offord lemma states that if S is a set of n real or complex numbers of absolute value at least one and A is any disc of radius one, then not more than ( c log n / n ) 2 n {\displaystyle {\Big ...