When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae , published in 1801.

  3. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    The number 3 is a primitive root modulo 7 [5] because = = = = = = = = = = = = (). Here we see that the period of 3 k modulo 7 is 6. The remainders in the period, which are 3, 2, 6, 4, 5, 1, form a rearrangement of all nonzero remainders modulo 7, implying that 3 is indeed a primitive root modulo 7.

  4. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    In practice, we would usually want the result modulo some modulus m. In that case, we would reduce each multiplication result (mod m) before proceeding. For simplicity, the modulus calculation is omitted here. This example shows how to compute using left to right binary exponentiation. The exponent is 1101 in binary; there are 4 bits, so there ...

  5. Modulus (algebraic number theory) - Wikipedia

    en.wikipedia.org/wiki/Modulus_(algebraic_number...

    In mathematics, in the field of algebraic number theory, a modulus (plural moduli) (or cycle, [1] or extended ideal [2]) is a formal product of places of a global field (i.e. an algebraic number field or a global function field). It is used to encode ramification data for abelian extensions of a global field.

  6. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  7. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  8. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...

  9. Kunerth's algorithm - Wikipedia

    en.wikipedia.org/wiki/Kunerth's_algorithm

    To find from a given value =, it takes the following steps: Find the modular square root ().This step is quite easy when is a prime, irrespective of how large is.; Solve a quadratic equation associated with the modular square root of = + +.