When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    [2]: p. 1 They could also construct half of a given angle, a square whose area is twice that of another square, a square having the same area as a given polygon, and regular polygons of 3, 4, or 5 sides [2]: p. xi (or one with twice the number of sides of a given polygon [2]: pp. 49–50 ).

  3. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    A regular polygon with n sides can be constructed with ruler, compass, and angle trisector if and only if =, where r, s, k ≥ 0 and where the p i are distinct Pierpont primes greater than 3 (primes of the form +). [8]: Thm. 2 These polygons are exactly the regular polygons that can be constructed with Conic section, and the regular polygons ...

  4. Hexagon - Wikipedia

    en.wikipedia.org/wiki/Hexagon

    It follows from the ratio of circumradius to inradius that the height-to-width ratio of a regular hexagon is 1:1.1547005; that is, a hexagon with a long diagonal of 1.0000000 will have a distance of 0.8660254 or cos(30°) between parallel sides.

  5. Constructible number - Wikipedia

    en.wikipedia.org/wiki/Constructible_number

    The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.

  6. Regular heptagon - Wikipedia

    en.wikipedia.org/wiki/Heptagon

    The area (A) of a regular heptagon of side length a is given by: A = 7 4 a 2 cot ⁡ π 7 ≃ 3.634 a 2 . {\displaystyle A={\frac {7}{4}}a^{2}\cot {\frac {\pi }{7}}\simeq 3.634a^{2}.} This can be seen by subdividing the unit-sided heptagon into seven triangular "pie slices" with vertices at the center and at the heptagon's vertices, and then ...

  7. 65537-gon - Wikipedia

    en.wikipedia.org/wiki/65537-gon

    The regular 65537-gon (one with all sides equal and all angles equal) is of interest for being a constructible polygon: that is, it can be constructed using a compass and an unmarked straightedge. This is because 65,537 is a Fermat prime , being of the form 2 2 n + 1 (in this case n = 4).

  8. Tetradecagon - Wikipedia

    en.wikipedia.org/wiki/Tetradecagon

    The regular tetradecagon has Dih 14 symmetry, order 28. There are 3 subgroup dihedral symmetries: Dih 7, Dih 2, and Dih 1, and 4 cyclic group symmetries: Z 14, Z 7, Z 2, and Z 1. These 8 symmetries can be seen in 10 distinct symmetries on the tetradecagon, a larger number because the lines of reflections can either pass through vertices or edges.

  9. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    Together with the property of equal-length sides, this implies that every regular polygon also has an inscribed circle or incircle that is tangent to every side at the midpoint. Thus a regular polygon is a tangential polygon. A regular n-sided polygon can be constructed with compass and straightedge if and only if the odd prime factors of n are ...