Search results
Results From The WOW.Com Content Network
[2]: p. 1 They could also construct half of a given angle, a square whose area is twice that of another square, a square having the same area as a given polygon, and regular polygons of 3, 4, or 5 sides [2]: p. xi (or one with twice the number of sides of a given polygon [2]: pp. 49–50 ).
A regular polygon with n sides can be constructed with ruler, compass, and angle trisector if and only if =, where r, s, k ≥ 0 and where the p i are distinct Pierpont primes greater than 3 (primes of the form +). [8]: Thm. 2 These polygons are exactly the regular polygons that can be constructed with Conic section, and the regular polygons ...
It follows from the ratio of circumradius to inradius that the height-to-width ratio of a regular hexagon is 1:1.1547005; that is, a hexagon with a long diagonal of 1.0000000 will have a distance of 0.8660254 or cos(30°) between parallel sides.
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.
The area (A) of a regular heptagon of side length a is given by: A = 7 4 a 2 cot π 7 ≃ 3.634 a 2 . {\displaystyle A={\frac {7}{4}}a^{2}\cot {\frac {\pi }{7}}\simeq 3.634a^{2}.} This can be seen by subdividing the unit-sided heptagon into seven triangular "pie slices" with vertices at the center and at the heptagon's vertices, and then ...
The regular 65537-gon (one with all sides equal and all angles equal) is of interest for being a constructible polygon: that is, it can be constructed using a compass and an unmarked straightedge. This is because 65,537 is a Fermat prime , being of the form 2 2 n + 1 (in this case n = 4).
The regular tetradecagon has Dih 14 symmetry, order 28. There are 3 subgroup dihedral symmetries: Dih 7, Dih 2, and Dih 1, and 4 cyclic group symmetries: Z 14, Z 7, Z 2, and Z 1. These 8 symmetries can be seen in 10 distinct symmetries on the tetradecagon, a larger number because the lines of reflections can either pass through vertices or edges.
Together with the property of equal-length sides, this implies that every regular polygon also has an inscribed circle or incircle that is tangent to every side at the midpoint. Thus a regular polygon is a tangential polygon. A regular n-sided polygon can be constructed with compass and straightedge if and only if the odd prime factors of n are ...