Search results
Results From The WOW.Com Content Network
Automotive aerodynamics differs from aircraft aerodynamics in several ways: The characteristic shape of a road vehicle is much less streamlined compared to an aircraft. The vehicle operates very close to the ground, rather than in free air. The operating speeds are lower (and aerodynamic drag varies as the square of speed).
Various other characteristics affect the coefficient of drag as well, and are taken into account in these examples. Many sports cars have a surprisingly high drag coefficient, as downforce implies drag, while others are designed to be highly aerodynamic in pursuit of a speed and efficiency, and as a result have much lower drag coefficients.
In car design, ground effect is a series of effects which have been exploited in automotive aerodynamics to create downforce, particularly in racing cars. This has been the successor to the earlier dominant aerodynamic focus on streamlining .
The low-pressure wake behind a group's leading car reduces the aerodynamic resistance on the front of the trailing car, allowing the second car to pull closer. As the second car nears the first, it pushes high-pressure air forward so less fast-moving air hits the lead car's spoiler. The result is less drag for both cars, allowing faster speeds. [3]
Top: Lateral view; the red circles mark the front air dam/splitter and rear diffuser. Bottom: Rear. A diffuser, in an automotive context, is a shaped section of the car rear which improves the car's aerodynamic properties by enhancing the transition between the high-velocity airflow underneath the car and the much slower freestream airflow of the ambient atmosphere.
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
Vehicle dynamics is the study of vehicle motion, e.g., how a vehicle's forward movement changes in response to driver inputs, propulsion system outputs, ambient conditions, air/surface/water conditions, etc. Vehicle dynamics is a part of engineering primarily based on classical mechanics.
The design paradigm of sloping the tail to reduce drag was carried to an extreme on cars such as the Cunningham C-5R, [14] resulting in an airfoil effect lifting the rear of the car at speed and so running the risk of instability or loss of control. The Kammback decreased the area of the lifting surface while creating a low-pressure zone ...