Search results
Results From The WOW.Com Content Network
Going the other direction, the matrix exponential of any skew-symmetric matrix is an orthogonal matrix (in fact, special orthogonal). For example, the three-dimensional object physics calls angular velocity is a differential rotation, thus a vector in the Lie algebra s o ( 3 ) {\displaystyle {\mathfrak {so}}(3)} tangent to SO(3) .
More specifically, they can be characterized as orthogonal matrices with determinant 1; that is, a square matrix R is a rotation matrix if and only if R T = R −1 and det R = 1. The set of all orthogonal matrices of size n with determinant +1 is a representation of a group known as the special orthogonal group SO( n ) , one example of which is ...
The orthogonal matrices with determinant 1 form a subgroup called the special orthogonal ... is an example of an ... value 1 to the special orthogonal matrix
A matrix will preserve or reverse orientation according to whether the determinant of the matrix is positive or negative. For an orthogonal matrix R, note that det R T = det R implies (det R) 2 = 1, so that det R = ±1. The subgroup of orthogonal matrices with determinant +1 is called the special orthogonal group, denoted SO(3).
Orthostochastic matrix — doubly stochastic matrix whose entries are the squares of the absolute values of the entries of some orthogonal matrix; Precision matrix — a symmetric n×n matrix, formed by inverting the covariance matrix. Also called the information matrix. Stochastic matrix — a non-negative matrix describing a stochastic ...
Therefore, a special linear matrix can be written as the product of a special unitary matrix (or special orthogonal matrix in the real case) and a positive definite hermitian matrix (or symmetric matrix in the real case) having determinant 1.
The exponential representation of an orthogonal matrix of order can also be obtained starting from the fact that in dimension any special orthogonal matrix can be written as =, where is orthogonal and S is a block diagonal matrix with ⌊ / ⌋ blocks of order 2, plus one of order 1 if is odd; since each single block of order 2 is also an ...
The name comes from the fact that it is the special orthogonal group of order 4. In this article rotation means rotational displacement. For the sake of uniqueness, rotation angles are assumed to be in the segment [0, π] except where mentioned or clearly implied by the context otherwise.