Ad
related to: viscoelastic properties of materials examples
Search results
Results From The WOW.Com Content Network
Viscoelastic materials have elements of both of these properties and, as such, exhibit time-dependent strain. Whereas elasticity is usually the result of bond stretching along crystallographic planes in an ordered solid, viscosity is the result of the diffusion of atoms or molecules inside an amorphous material.
A Maxwell material is the most simple model viscoelastic material showing properties of a typical liquid. It shows viscous flow on the long timescale, but additional elastic resistance to fast deformations. [1] It is named for James Clerk Maxwell who proposed the model in 1867.
A Kelvin–Voigt material, also called a Voigt material, is the most simple model viscoelastic material showing typical rubbery properties. It is purely elastic on long timescales (slow deformation), but shows additional resistance to fast deformation.
Under certain circumstances, flows of granular materials can be modelled as a continuum, for example using the μ rheology. Such continuum models tend to be non-Newtonian, since the apparent viscosity of granular flows increases with pressure and decreases with shear rate. The main difference is the shearing stress and rate of shear.
Viscoelastic materials have the properties of both viscous and elastic materials and can be modeled by combining elements that represent these characteristics. One viscoelastic model, called the Maxwell model predicts behavior akin to a spring (elastic element) being in series with a dashpot (viscous element), while the Voigt model places these ...
Dynamic mechanical analysis (abbreviated DMA) is a technique used to study and characterize materials.It is most useful for studying the viscoelastic behavior of polymers.A sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus.
A material containing viscoelastic properties undergoes both viscous and elastic changes when a deformation occurs. Viscosity can be thought of as a time dependent process of a material deforming to a more relaxed state while elasticity is an instantaneous process.
The viscoelasticity of materials depend on the viscosity and can be mechanically modelled using mechanical elements known as springs and dashpots. In turn, constitutive equations can relate the mechanical interpretation of viscoelasticity to the materials properties and strain rate.