When.com Web Search

  1. Ad

    related to: matching graphs to equations kuta pdf class 10 maths all chapters summary

Search results

  1. Results From The WOW.Com Content Network
  2. Matching polynomial - Wikipedia

    en.wikipedia.org/wiki/Matching_polynomial

    The Hosoya index of a graph G, its number of matchings, is used in chemoinformatics as a structural descriptor of a molecular graph. It may be evaluated as m G (1) (Gutman 1991). The third type of matching polynomial was introduced by Farrell (1980) as a version of the "acyclic polynomial" used in chemistry.

  3. Maximum weight matching - Wikipedia

    en.wikipedia.org/wiki/Maximum_weight_matching

    Maximum weight matching of 2 graphs. The first is also a perfect matching, while the second is far from it with 4 vertices unaccounted for, but has high value weights compared to the other edges in the graph. In computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in ...

  4. Matching (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Matching_(graph_theory)

    A graph can only contain a perfect matching when the graph has an even number of vertices. A near-perfect matching is one in which exactly one vertex is unmatched. Clearly, a graph can only contain a near-perfect matching when the graph has an odd number of vertices, and near-perfect matchings are maximum matchings. In the above figure, part (c ...

  5. Tutte matrix - Wikipedia

    en.wikipedia.org/wiki/Tutte_matrix

    In graph theory, the Tutte matrix A of a graph G = (V, E) is a matrix used to determine the existence of a perfect matching: that is, a set of edges which is incident with each vertex exactly once. If the set of vertices is V = { 1 , 2 , … , n } {\displaystyle V=\{1,2,\dots ,n\}} then the Tutte matrix is an n -by- n matrix A with entries

  6. Perfect matching - Wikipedia

    en.wikipedia.org/wiki/Perfect_matching

    In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph G with edges E and vertices V, a perfect matching in G is a subset M of E, such that every vertex in V is adjacent to exactly one edge in M. The adjacency matrix of a perfect matching is a symmetric permutation matrix.

  7. Tutte–Berge formula - Wikipedia

    en.wikipedia.org/wiki/Tutte–Berge_formula

    In the mathematical discipline of graph theory the Tutte–Berge formula is a characterization of the size of a maximum matching in a graph. It is a generalization of Tutte theorem on perfect matchings , and is named after W. T. Tutte (who proved Tutte's theorem) and Claude Berge (who proved its generalization).

  8. Petersen's theorem - Wikipedia

    en.wikipedia.org/wiki/Petersen's_theorem

    In a cubic graph with a perfect matching, the edges that are not in the perfect matching form a 2-factor. By orienting the 2-factor, the edges of the perfect matching can be extended to paths of length three, say by taking the outward-oriented edges. This shows that every cubic, bridgeless graph decomposes into edge-disjoint paths of length ...

  9. Maximum cardinality matching - Wikipedia

    en.wikipedia.org/wiki/Maximum_cardinality_matching

    The problem of finding a matching with maximum weight in a weighted graph is called the maximum weight matching problem, and its restriction to bipartite graphs is called the assignment problem. If each vertex can be matched to several vertices at once, then this is a generalized assignment problem .

  1. Related searches matching graphs to equations kuta pdf class 10 maths all chapters summary

    maximum matching in graphmaximum matching graph theory
    c matching graphs