Search results
Results From The WOW.Com Content Network
An unresolved root, especially one using the radical symbol, is sometimes referred to as a surd [2] or a radical. [3] Any expression containing a radical, whether it is a square root, a cube root, or a higher root, is called a radical expression , and if it contains no transcendental functions or transcendental numbers it is called an algebraic ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
In mathematics, an algebraic expression is an expression built up from constants (usually, algebraic numbers) variables, and the basic algebraic operations: addition (+), subtraction (-), multiplication (×), division (÷), whole number powers, and roots (fractional powers).
Viète's formula, as printed in Viète's Variorum de rebus mathematicis responsorum, liber VIII (1593). In mathematics, Viète's formula is the following infinite product of nested radicals representing twice the reciprocal of the mathematical constant π: = + + + It can also be represented as = = +.
In number theory, the radical of a positive integer n is defined as the product of the distinct prime numbers dividing n. Each prime factor of n occurs exactly once as a factor of this product: r a d ( n ) = ∏ p ∣ n p prime p {\displaystyle \displaystyle \mathrm {rad} (n)=\prod _{\scriptstyle p\mid n \atop p{\text{ prime}}}p}
When a cubic equation with real coefficients has three real roots, the formulas expressing these roots in terms of radicals involve complex numbers. Galois theory allows proving that when the three roots are real, and none is rational (casus irreducibilis), one cannot express the roots in terms
The symbol was first seen in print without the vinculum (the horizontal "bar" over the numbers inside the radical symbol) in the year 1525 in Die Coss by Christoff Rudolff, a German mathematician. In 1637 Descartes was the first to unite the German radical sign √ with the vinculum to create the radical symbol in common use today. [3]
The nested radicals in this solution cannot in general be simplified unless the cubic equation has at least one rational solution. Indeed, if the cubic has three irrational but real solutions, we have the casus irreducibilis , in which all three real solutions are written in terms of cube roots of complex numbers.