When.com Web Search

  1. Ad

    related to: function with no maximum value in excel definition examples pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    For example, x ∗ is a strict global maximum point if for all x in X with x ≠ x ∗, we have f(x ∗) > f(x), and x ∗ is a strict local maximum point if there exists some ε > 0 such that, for all x in X within distance ε of x ∗ with x ≠ x ∗, we have f(x ∗) > f(x). Note that a point is a strict global maximum point if and only if ...

  3. Fisher information - Wikipedia

    en.wikipedia.org/wiki/Fisher_information

    Near the maximum likelihood estimate, low Fisher information therefore indicates that the maximum appears "blunt", that is, the maximum is shallow and there are many nearby values with a similar log-likelihood. Conversely, high Fisher information indicates that the maximum is sharp.

  4. Arg max - Wikipedia

    en.wikipedia.org/wiki/Arg_max

    As an example, both unnormalised and normalised sinc functions above have of {0} because both attain their global maximum value of 1 at x = 0. The unnormalised sinc function (red) has arg min of {−4.49, 4.49}, approximately, because it has 2 global minimum values of approximately −0.217 at x = ±4.49.

  5. Range (statistics) - Wikipedia

    en.wikipedia.org/wiki/Range_(statistics)

    The probability of having a specific range value, t, can be determined by adding the probabilities of having two samples differing by t, and every other sample having a value between the two extremes. The probability of one sample having a value of x is (). The probability of another having a value t greater than x is:

  6. Essential infimum and essential supremum - Wikipedia

    en.wikipedia.org/wiki/Essential_infimum_and...

    For example, if one takes the function () that is equal to zero everywhere except at = where () =, then the supremum of the function equals one. However, its essential supremum is zero since (under the Lebesgue measure ) one can ignore what the function does at the single point where f {\displaystyle f} is peculiar.

  7. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    At points of discontinuity, a Fourier series converges to a value that is the average of its limits on the left and the right, unlike the floor, ceiling and fractional part functions: for y fixed and x a multiple of y the Fourier series given converges to y/2, rather than to x mod y = 0. At points of continuity the series converges to the true ...

  8. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.

  9. Sample maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Sample_maximum_and_minimum

    For a sample set, the maximum function is non-smooth and thus non-differentiable. For optimization problems that occur in statistics it often needs to be approximated by a smooth function that is close to the maximum of the set. A smooth maximum, for example, g(x 1, x 2, …, x n) = log( exp(x 1) + exp(x 2) + … + exp(x n) )